Foreword by César Galindo-Legaria, PhD ﬁ

Manager, Query Optimization Team, Microsoft SQL Server

Inside Microsoft’
SQL Server: 2008:

T-SQL Querying

ltzik Ben-Gan

Lubor Kollar, Dejan Sarka, Steve Kass
Kalen Delaney—Series Editor

. SOLID
@.}{ QUALITY

MENTORS

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by Itzik Ben-Gan

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009920791

Printed and bound in the United States of America.

123456789 QWT 432109

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Excel, MS, MSDN, PivotTable, SQL Server, Visual Basic, Visual C#, Visual Studio and Windows
are either registered trademarks or trademarks of the Microsoft group of companies. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones

Developmental Editor: Sally Stickney

Project Editor: Denise Bankaitis

Editorial Production: S4Carlisle Publishing Services

Technical Reviewers: Steve Kass and Umachandar Jayachandran; Technical Review services provided by Content
Master, a member of CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X15-45856

To my parents, Mila & Gabi

—Itzik Ben-Gan

Table of Contents

Forewordo e Xiii
Acknowledgments. XV
Introduction e e Xix
1 Logical Query Processing.........coeuuiiieiiiiiiiineeeiiunanneennns 1
Logical Query Processing Phases i, 2
Logical Query Processing Phases in Brief 3

Sample Query Based on Customers/Orders Scenario...................... 5
Logical Query Processing Phase Details. 7

Step 1: The FROM Phase. 7

Step 2: The WHERE Phase. i 11

Step 3: The GROUP BY Phase. ... 12

Step4: The HAVING Phase. 13

Step 5: The SELECT Phase. ...t 14

Step 6: The Presentation ORDERBY Phase 16

Further Aspects of Logical Query Processingccovvvieiena.... 20
Table Operators 20

OVER ClaUSe . . . oottt e e 29

Set Operators 31

CONCIUSION. . oo 33

2 Set Theory and Predicate Logic 35
An Example of English-to-Mathematics Translation 35
Well-Definedness.o 37

Equality, Identity, and Sameness. i i i i 39
Mathematical Conventions o .. 39

NUMDEIS .« . 41

Context ... o 41

Functions, Parameters, and Variables. 43
Instructions and Algorithms. o i i i i 43

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vi Table of Contents

St TR0y . o 44
Notation for Sets 45
Well-Definedness of Sets 46
Domains of DiSCoUrse o 46
Faithfulness. 49
Russell’s Paradox 52
Ordered Pairs, Tuples, and Cartesian Products. 53
The Empty Set(s). 54
The Characteristic Functionofa Set....................... 55
Cardinality. 56
Order .« 57
Set OPerators 61
Set Partitions. 63
Generalizationsof Set Theory i 64

Predicate LOgiC.o 65
Logic-Like Features of Programming Languages. 65
Propositions and Predicates. 66
The Law of Excluded Middle, 68
ANnd, Or, and NOtot 68
Logical Equivalence. ... i 70
Logical Implication. 70
Quantification. 72
Alternatives and Generalizations. 73

Relations ... o 75
The Reflexive, Symmetric, and Transitive Properties 75

A Practical Application ... 77

CONCIUSION. . .ot 81

3 TheRelational Model........... 83

Introduction to the Relational Model....................... 83
Relations, Tuples and Typesot 84
The Relational Model: A Quick Summary 89

Relational Algebra and Relational Calculus. 90
Basic Operators 90
Relational Algebra. 91
Relational Calculus. 102
T-SQL SUPPOrt .. 103

Datalntegrityo o 104
Declarative Constraints. i 105

Other Means of Enforcing Integrity 109

Table of Contents vii

Normalization and Other Design TOpPIicSo oot 111
Normal Forms Dealing with Functional Dependencies. 112
Higher Normal Forms. 119
Denormalization. 122
Generalization and Specialization.......................... 124

CONCIUSION . .« .o 126

4 QUEry TUNING. ..ottt it et ettt et e i eie e 127

Sample Data for This Chapter 127

Tuning Methodology. 131
Analyze Waits at the Instance Level 134
Correlate Waits with Queues. 143
Determine Course of Action ..., 145
Drill Down to the Database/File Level 145
Drill Down to the Process Level........ 148
Tune Indexes and QUENIESoiiiiiiiie i 169

Tools for QUery TUNING . ..ottt 171
Cached Query ExecutionPlans 171
Clearingthe Cache.o i 171
Dynamic Management Objects. ..., 172
STATISTICS 1O oo e 172
Measuring the Run Time of Queries. 173
Analyzing Execution Plans 174
HintS. o 185
Traces/Profiler. 186
Database Engine Tuning AdVisor.cooiiiiiiiiiiiinn, 187
Data Collection and Management Data Warehouse. 187
Using SMO to Clone Statistics 187

INdeX TUNING . .« oo 187
Table and Index Structures. ... 188
Index Access Methods. i 197
Analysis of Indexing Strategies, 244
Fragmentation 256
Partitioningo 258

Preparing Sample Data. 259
Data Preparation 259
TABLESAMPLE.o 265

An Examination of Set-Based vs. Iterative/Procedural

Approaches and a Tuning EXercise, 268

CoNCIUSION. ..o 276

viii Table of Contents

5 Algorithms and Complexity...........c.coviiiiiiiiiiiaa... 277
DoYouHaveaQuarter?. 278
How Algorithms Scale. ... e 279
An Example of QuadraticScalingl 280
An Algorithm with Linear Complexity 280
Exponential and Superexponential Complexity 281
Sublinear Complexity 282
Constant Complexity.oouiiiinin e 283
Technical Definitions of Complexity.............................. 283
Comparing Complexitieso, 285
Classic Algorithms and Algorithmic Strategies.......................... 286
Algorithms for Sorting 287
String Searching. 289
A Practical Application 290
Identifying Trends in MeasurementData 291
The Algorithmic Complexity of LISLP., 291
Solving the Longest Increasing Subsequence Length
Problem in T-SQL. 292
CONCIUSION. « oo 295
6 Subqueries, Table Expressions, and Ranking Functions 297
SUDQUENIES. . . . 298
Self-Contained Subqueries. 298
Correlated Subqueries. 302
Misbehaving Subqueries. 314
Uncommon Predicateso 316
Table EXPressionst 318
Derived Tables 318
Common Table Expressions. i, 321
Analytical Ranking Functions. i i 330
Row Number. 332
Rank and Dense Rank i i 352
Tile Numbero 354
Aucxiliary Table of Numbers ... 359
Missing and Existing Ranges (Also Known as Gaps and Islands) 363
Missing Ranges (Gaps). . . . oo v vt e et 366
Existing Ranges (Islands). 375

CONCIUSION. . .ot 387

Table of Contents ix

7 Joinsand SetOperations.................. ..., 389
JOINS 389
Old Stylevs. New Style i 389
Fundamental Join Types. ... 390
Further Examples of Joins.o i 402
Sliding Total of Previous Year.t 417

Join Algorithms 421
Separating Elements 429

Set Operationsot 435
UNION . . 436
EXCEPT . 437
INTERSECT . .. e 439
Precedence of Set Operations., 440
Using INTO with Set Operations........... ... i, 441
Circumventing Unsupported Logical Phases. 441
CONCIUSION . .« . 443
8 Aggregating and PivotingData 445
OVER ClaUSE . . . oottt ettt ettt e 445
Tiebreakers 448
Running Aggregationsc.ooioiiiiinnniiiiiiiiiiii 451
Cumulative Aggregations.t 453
Sliding Aggregations. 457
Year-to-Date (YTD) e 459
PIVOtING . . o 460
Pivoting Attributes. 460
Relational Division 465
AggregatingData 466
UNPIVOING. .« oo 470
Custom Aggregationsottt 473
Custom Aggregations Using Pivoting 474

User Defined Aggregates (UDA)coviiiiiiiiii.. 476
Specialized Solutions. 487
Histogramso 499
Grouping Factor. 503
GroUPING SetS. . oo 506
Sample Data 507

The GROUPING SETS Subclause 508

X Table of Contents

The CUBE Subclause 511

The ROLLUP Subclause e 512
Grouping Sets Algebra......... ... 514

The GROUPING_ID Functionoo i 518
Materialize Grouping Sets ... 521
SOMtING o o 524
CONCIUSION. . .o 525
9 TOPand APPLY i e e 527
SELECT TOP . . ot e 527
TOP and Determinism.ooiiiii e 529

TOP and Input EXPressions.ot 530

TOP and Modificationso i 531

TOP ON Steroidsttt 534
ALY Lo 535
Solutions to Common Problems Using TOP and APPLY 537
TOP nforEach Group 537
Matching Current and Previous Occurrences. 543
Paging ... 547
Random ROWS.o 552
Median. 554
Logical Transformations i 556
CONCIUSION. . .o 559
10 Data Modification.......... 561
Inserting Data. o 561
Enhanced VALUES Clause. 561
SELECT INTO . .ot e 563
BULK Rowset Provider. 565
Minimally Logged Operations., 567
INSERT EXEC . . .\ttt e e e e e e 590
Sequence Mechanisms 595
GUIDS . e 600
Deleting Data 601
TRUNCATE vs. DELETE. . ..o 601
Removing Rows with Duplicate Data.................... 601

DELETE USiNg JOINS e 603

Table of Contents

Updating Data 606
UPDATE USINg JOINS. . . oo e 606
Updating Large Value Types 610
SELECT and UPDATE Statement Assignments. 611

Merging Data 616
MERGE Fundamentals. i 617
Adding a Predicate 621
Multiple WHEN Clausesoo i 623
WHEN NOT MATCHED BY SOURCE i 624
MERGE Values. 626
MERGE and Triggers 627

OUTPUT ClaUSe. . . . ettt ettt ettt et e 628
INSERT with OUTPUT. e 629
DELETE with OUTPUT s 630
UPDATE with OUTPUT. s 632
MERGE with OUTPUT ... e 634
Composable DML 636

CONCIUSION. .« . 638

11 Querying Partitioned Tables................. 639

Partitioning in SQL Server. 639
Partitioned Views.o 639
Partitioned Tables 640

COoNCIUSION. .« .o 657

12 Graphs, Trees, Hierarchies, and Recursive Queries. 659

TerminolOgy . ..o 659
Graphs . .o 659
=T 660
Hierarchies. 661

SCENAMIOS . . o ottt ettt 661
Employee Organizational Chart 661
Bill of Materials (BOM) 663
Road System o 666

[teration/ReCUrsion i 670
Subordinates. 671

ANCESTOrS. . . o e 681

xi

xii Table of Contents

Subgraph/Subtree with Path Enumeration 685

SOMtING . ottt 688

CYCleS . e 691
Materialized Path. 694
Maintaining Data. 695

QUETIYING 701
Materialized Path with the HIERARCHYID Data Type 706
Maintaining Data. ... 708

QUETIYING 715

Further Aspects of Working with HIERARCHYID 719

Nested Sets.o 730
Assigning Leftand Right Values 731

QUETIYING . 737

Transitive ClOSUreo 740
Directed Acyclic Graph 740

CONCIUSION. . oo 755
Appendix A: Logic Puzzles ot i 757
INAEX o e 779

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Foreword

| had met Itzik Ben-Gan briefly a couple of times and knew of his reputation, so | was looking
forward to his afternoon session on avoiding cursors in SQL programming at PASS. | was lucky
to get there early, as the large room filled up quickly. Itzik took a couple of SQL programming
problems and diced them up in the most skillful and entertaining way, showing the elegance
and efficiency of set-oriented thinking. The audience loved it—and so did |, except | had

a different angle. Having worked on the internals of SQL Server, | could see Itzik touch the
product nerves in his demos, and | admired how he turned features into beautiful solutions.
After the session, | asked one of the attendees what had been his main takeaway, curious
about which of the many techniques would have stood out for him. He looked at me, mildly
surprised, and just said, “The man is a genius!” That pretty much sums it up.

This question of cursors is more fundamental than it may appear at first. It points to a deep
dichotomy of tremendous practical importance. Most of us were taught to program by chopping
up a task into smaller steps that, when executed in sequence, perform a desired computation. But
if you approach SQL programming this way, you will get only mediocre results. Your code will be
much larger and harder to maintain. It will be less efficient, less flexible, and less tunable. Using
SQL effectively is not about an incremental extension of your procedural programming skills

or about a specific collection of tricks. Writing SQL well requires approaching problems with a
different mind-set—one that is declarative and set oriented, not procedural. This is the dichotomy.

Inside Microsoft SQL Server 2008: T-SQL Querying puts together all the ingredients you need

to understand this declarative and set-oriented way of thinking and become a proficient

SQL programmer, thus making an important contribution to the SQL Server development
community. Its chapters on formal foundations help you understand the basis for the language
philosophy and get a sense for its potential. The language itself is covered thoroughly, from
the basic operations to the most advanced features, all of them explained in the context of

real problem solving. The many examples show you what good SQL looks like, and they cover
common patterns you are likely to find when writing applications. A comprehensive chapter on
query tuning explains in detail the factors that impact performance in the system, how to go
about identifying issues, and how to address them effectively.

Itzik assembled a strong team of collaborators to write this book. Coming from different
backgrounds, all of them share a deep expertise in SQL, a passion for database technology,
extensive teaching experience, and a recognized track record of contributions to the SQL
Server community. Steve Kass is known for his depth of understanding and clarity of thought.
Dejan Sarka contributes an extensive knowledge of the relational model and a breadth of
database technologies. As for Lubor Kollar, I've had the pleasure of working with him on the
definition, design, and implementation of the Query Processing engine of SQL Server for
over a decade, and | deeply respect his insight. They make an outstanding team of guides
who can help you improve your skills.

xiii

xiv Foreword

SQL is a very powerful language, but | believe only a minority of developers really know

how to get the most out of it. Using SQL well can mean code that is 10 times more efficient,
more scalable, and more maintainable. Inside Microsoft SQL Server 2008: T-SQL Querying tells
you how.

César Galindo-Legaria, PhD

Manager of the Query Optimization Team, Microsoft SQL Server

Acknowledgments

Several people contributed to the T-SQL querying and T-SQL programming books, and I'd
like to acknowledge their contributions. Some were involved directly in writing or editing the
books, while others were involved indirectly by providing advice, support, and inspiration.

To the coauthors of Inside Microsoft SQL Server 2008: T-SQL Querying—Lubor Kollar,

Dejan Sarka, and Steve Kass—and to the coauthors of Inside Microsoft SQL Server 2008:
T-SQL Programming—Dejan Sarka, Roger Wolter, Greg Low, Ed Katibah, and Isaac Kunen—it
is a great honor to work with you. It is simply amazing to see the level of mastery that you
have over your areas of expertise, and it is pure joy to read your texts. Thanks for agreeing to
be part of this project.

To Lubor, besides directly contributing to the books, you provide support, advice, and
friendship and are a great source of inspiration. | always look forward to spending time with
you—nhiking, drinking, and talking about SQL and other things.

To Dejko, your knowledge of the relational model is admirable. Whenever we spend time
together, | learn new things and discover new depths. | like the fact that you don't take things
for granted and don't follow blindly words of those who are considered experts in the field.
You have a healthy mind of your own and see things that very few are capable of seeing. I'd
like to thank you for agreeing to contribute texts to the books. I'd also like to thank you for
your friendship; | always enjoy spending time with you. We need to do the beer list thing
again some time. It's been almost 10 years!

To the technical editor of the books, Steve Kass, your unique mix of strengths in mathematics,
SQL, and English are truly extraordinary. | know that editing both books and also writing
your own chapters took their toll. Therefore, I'd like you to know how much | appreciate

your work. | know you won't like my saying this, but it is quite interesting to see a genius at
work. It kept reminding me of Domingo Montoya'’s work on the sword he prepared for the
six-fingered man from William Goldman’s The Princess Bride.

To Umachandar Jayachandran (UC), many thanks for helping out by editing some of the
chapters. Your mastery of T-SQL is remarkable, and I'm so glad you could join the project in
any capacity. I'd also like to thank Bob Beauchemin for reviewing the chapter on Spatial Data.

To Cesar Galindo-Legaria, | feel honored that you agreed to write the foreword for the
T-SQL querying book. The way you and your team designed SQL Server’s optimizer is simply
a marvel. I'm constantly trying to figure out and interpret what the optimizer does, and
whenever | manage to understand a piece of the puzzle, | find it astonishing what a piece of
software is capable of. Your depth of knowledge, your pleasant ways, and your humility are
an inspiration.

Xxvi

Acknowledgments

To the team at Microsoft Press: Ken Jones, the product planner: | appreciate the personal
manner in which you handle things and always look forward to Guinness sessions with you.
| think that you have an impossible job trying to make everyone happy and keep projects
moving, but somehow you still manage to do it.

To Sally Stickney, the development editor, thanks for kicking the project off the ground. | know
that the T-SQL querying book was your last project at Microsoft Press before you started your
new chosen path in life and am hopeful that it left a good impression on you. | wish you luck
and happiness in your new calling.

To Denise Bankaitis, the project editor, you of all people at Microsoft Press probably spent
most time working on the books. Thanks for your elegant project management and for
making sure things kept flowing. It was a pleasure to work with you.

I'd also like to thank DeAnn Montoya, the project manager for the vendor editorial team,
S4Carlisle Publishing Services, and Becka McKay, the copy editor. | know you spent countless
hours going over our texts, and | appreciate it a lot.

To Solid Quality Mentors, being part of this amazing company and group of people is by far the
best thing that happened to me in my career. It's as if all | did in my professional life led me to this
place where | can fulfill my calling, which is teaching people about SQL. To Fernando Guerrero,
Brian Moran, and Douglas McDowell: the company grew and matured because of your efforts, and
you have a lot to be proud of. Being part of this company, | feel a part of something meaningful
and that I'm among family and friends—among people whom | both respect and trust.

I'd like to thank my friends and colleagues from the company: Ron Talmage, Andrew J. Kelly,
Eladio Rincon, Dejan Sarka, Herbert Albert, Fritz Lechnitz, Gianluca Hotz, Erik Veerman,

Jay Hackney, Daniel A. Seara, Davide Mauri, Andrea Benedetti, Miguel Egea, Adolfo Wiernik,
Javier Loria, Rushabh Mehta, Greg Low, Peter Myers, Randy Dyess, and many others. I'd like
to thank Jeanne Reeves for making many of my classes possible and all the back-office team
for their support. I'd also like to thank Kathy Blomstrom for managing our writing projects
and for your excellent edits.

I'd like to thank the members of the SQL Server development team who are working on T-SQL
and its optimization: Michael Wang, Michael Rys, Eric Hanson, Umachandar Jayachandran
(UC), Tobias Thernstrém, Jim Hogg, Isaac Kunen, Krzysztof Kozielczyk, Cesar Galindo-Legaria,
Craig Freedman, Conor Cunningham, and many others. For better or worse, what you develop
is what we have to work with, and so far the results are outstanding! Still, until we get a full
implementation of the OVER clause, you know | won't stop bothering you. ;-)

I'd like to thank Dubi Lebel and Assaf Fraenkel from Microsoft Israel and also Ami Levin, who
helps me run the Israeli SQL Server users group.

Acknowledgments xvii

To the team at SQL Server Magazine: Megan Bearly, Sheila Molnar, Mary Waterloo,

Michele Crockett, Mike Otey, Lavon Peters, and Anne Grubb: Being part of this magazine is a
great privilege. Congratulations on the 10th anniversary of the magazine! | can't believe that
10 years passed so quickly, but that's what happens when you have fun.

To my fellow SQL Server MVPs: Erland Sommarskog, Alejandro Mesa, Aaron Bertrand,

Tibor Karaszi, Steve Kass, Dejan Sarka, Roy Harvey, Tony Rogerson, Marcello Poletti (Marc),

Paul Randall, Bob Beauchemin, Adam Machanic, Simon Sabin, Tom Moreau, Hugo Kornelis,
David Portas, David Guzman, and many others: Your contribution to the SQL Server community
is remarkable. Much of what | know today is thanks to our discussions and exchange of ideas.

To my fellow SQL Server MCTs: Tibor Karaszi, Chris Randall, Ted Malone, and others: We go a
long way back, and I'm glad to see that you're all still around in the SQL teaching community.
We all share the same passion for teaching. Of anyone, you best understand the kind of
fulfillment that teaching can bestow.

To my students: Without you, my work would be meaningless. Teaching is what | like to do
best, and the purpose of pretty much everything else that | do with SQL—including writing
these books—is to support my teaching. Your questions make me do a lot of research, and
therefore | owe much of my knowledge to you.

To my parents, Emilia and Gabriel Ben-Gan, and to my siblings, Ina Aviram and Michael Ben-Gan,
thanks for your continuous support. The fact that most of us ended up being teachers is probably
not by chance, but for me to fulfill my calling, | end up traveling a lot. | miss you all when I'm
away, and | always look forward to our family reunions when I'm back.

To Lilach, you're the one who needs to put up with me all the time and listen to my SQL ideas
that you probably couldn’t care less about. It's brainwashing, you see—at some point you

will start asking for more, and before you know it, you will even start reading my books. Not
because | will force you but because you will want to, of course. That's the plan at least. Thanks
for giving meaning to what | do and for supporting me through some rough times of writing.

Introduction

This book and its sequel—Inside Microsoft SQL Server 2008: T-SQL Programming—cover
advanced T-SQL querying, query tuning, and programming in Microsoft SQL Server 2008.
They are designed for experienced programmers and DBAs who need to write and optimize
code in SQL Server 2008. For brevity, I'll refer to the books as T-SQL Querying and T-SQL
Programming, or just as these books.

Those who read the SQL Server 2005 edition of the books will find plenty of new materials
covering new subjects, new features, and enhancements in SQL Server 2008, plus revisions
and new insights about the existing subjects.

These books focus on practical common problems, discussing several approaches to
tackle each. You will be introduced to many polished techniques that will enhance
your toolbox and coding vocabulary, allowing you to provide efficient solutions in a
natural manner.

These books unveil the power of set-based querying and explain why it's usually superior to
procedural programming with cursors and the like. At the same time, they teach you how to
identify the few scenarios where cursor-based solutions are superior to set-based ones.

This book—T-SQL Querying—focuses on set-based querying and query tuning, and

| recommend that you read it first. The second book—T-SQL Programming—focuses on
procedural programming and assumes that you read the first book or have sufficient
querying background.

T-SQL Querying starts with five chapters that lay the foundation of logical and physical query
processing required to gain the most from the rest of the chapters in both books.

The first chapter covers logical query processing. It describes in detail the logical phases
involved in processing queries, the unique aspects of SQL querying, and the special mind-set
you need to adopt to program in a relational, set-oriented environment.

The second chapter covers set theory and predicate logic—the strong mathematical
foundations upon which the relational model is built. Understanding these foundations

will give you better insights into the model and the language. This chapter was written

by Steve Kass, who was also the main technical editor of these books. Steve has a unique
combination of strengths in mathematics, computer science, SQL, and English that make him
the ideal author for this subject.

Xix

XX

Introduction

The third chapter covers the relational model. Understanding the relational model is
essential for good database design and helps in writing good code. The chapter defines
relations and tuples and operators of relational algebra. Then it shows the relational model
from a different perspective called relational calculus. This is more of a business-oriented
perspective, as the logical model is described in terms of predicates and propositions.
Data integrity is crucial for transactional systems; therefore, the chapter spends time
discussing all kinds of constraints. Finally, the chapter introduces normalization—the
formal process of improving database design. This chapter was written by Dejan Sarka.
Dejan is one of the people with the deepest understanding of the relational model

that | know.

The fourth chapter covers query tuning. It introduces a query tuning methodology we
developed in our company (Solid Quality Mentors) and have been applying in production
systems. The chapter also covers working with indexes and analyzing execution plans. This
chapter provides the important background knowledge required for the rest of the chapters
in both books, which as a practice discuss working with indexes and analyzing execution
plans. These are important aspects of querying and query tuning.

The fifth chapter covers complexity and algorithms and was also written by Steve Kass. This
chapter particularly focuses on some of the algorithms used often by the SQL Server engine.
It gives attention to considering worst-case behavior as well as average case complexity.

By understanding the complexity of algorithms used by the engine, you can anticipate, for
example, how the performance of certain queries will degrade when more data is added

to the tables involved. Gaining a better understanding of how the engine processes your
queries equips you with better tools to tune them.

The chapters that follow delve into advanced querying and query tuning, addressing both
logical and physical aspects of your code. These chapters cover the following subjects:
subqueries, table expressions, and ranking functions; joins and set operations; aggregating
and pivoting data; TOP and APPLY; data modification; querying partitioned tables; and
graphs, trees, hierarchies, and recursive queries.

The chapter covering querying partitioned tables was written by Lubor Kollar. Lubor led

the development of partitioned tables and indexes when first introduced in the product,
and many of the features that we have today are thanks to his efforts. These days

Lubor works with customers who have, among other things, large implementations

of partitioned tables and indexes as part of his role in the SQL Server Customer Advisory
Team (SQL CAT).

Appendix A covers logic puzzles. Here you have a chance to practice logical puzzles to
improve your logic skills. SQL querying essentially deals with logic. | find it important to
practice pure logic to improve your query problem-solving capabilities. | also find these
puzzles fun and challenging, and you can practice them with the entire family. These puzzles

Introduction xxi

are a compilation of the logic puzzles that | covered in my T-SQL column in SQL Server
Magazine. I'd like to thank SQL Server Magazine for allowing me to share these puzzles with
the book’s readers.

The second book—T-SQL Programming—focuses on programmatic T-SQL constructs

and expands its coverage to treatment of XML and XQuery and the CLR integration.

The book's chapters cover the following subjects: views; user-defined functions; stored
procedures; triggers; transactions and concurrency; exception handling; temporary tables
and table variables; cursors; dynamic SQL; working with date and time; CLR user-defined
types; temporal support in the relational model; XML and XQuery (including coverage

of open schema); spatial data; change data capture, change tracking, and auditing;

and Service Broker.

The chapters covering CLR user-defined types, temporal support in the relational model,
and XML and XQuery were written by Dejan Sarka. As | mentioned, Dejan is extremely
knowledgeable in the relational model and has very interesting insights into the model
itself and the way the constructs that he covers in his chapters fit in the model when
used sensibly.

The chapter about spatial data was written by Ed Katibah and Isaac Kunen. Ed and Isaac
are with the SQL Server development team and led the efforts to implement spatial data
support in SQL Server 2008. It is a great privilege to have this chapter written by the
designers of the feature. Spatial data support is new to SQL Server 2008 and brings new
data types, methods, and indices. This chapter is not intended as an exhaustive treatise
on spatial data or as an encyclopedia of every spatial method that SQL Server now
supports. Instead, this chapter will introduce core spatial concepts and provide the reader
with key programming constructs necessary to successfully navigate this new feature

to SQL Server.

The chapter about change data capture, change tracking, and auditing was written by Greg
Low. Greg is a SQL Server MVP and the managing director of SolidQ Australia. Greg has
many years of experience working with SQL Server—teaching, speaking, and writing about
it—and is highly regarded in the SQL Server community. The technologies that are the focus
of this chapter track access and changes to data and are new in SQL Server 2008. At first
glance, these technologies can appear to be either overlapping or contradictory, and the
best-use cases for each might be far from obvious. This chapter explores each technology,
discusses the capabilities and limitations of each, and explains how each is intended

to be used.

The last chapter, which covers Service Broker (SSB), was written by Roger Wolter. Roger is
the program manager with the SQL Server development team and led the initial efforts to
introduce SSB in SQL Server. Again, there's nothing like having the designer of a component
explain it in his own words. The “sleeper” feature of SQL Server 2005 is now in production in

xxii

Introduction

a wide variety of applications. This chapter covers the architecture of SSB and how to use SSB
to build a variety of reliable asynchronous database applications. The SQL 2008 edition adds
coverage of the new features added to SSB for the SQL Server 2008 release and includes
lessons learned and best practices from SSB applications deployed since the SQL Server 2005
release. The major new features are Queue Priorities, External Activation, and a new SSB
troubleshooting application that incorporates lessons the SSB team learned from customers
who have already deployed applications.

Hardware and Software Requirements

To practice all the material in these books and run all code samples, it is

recommended that you use Microsoft SQL Server 2008 Developer or Enterprise Edition
and Microsoft Visual Studio 2008 Professional or Database Edition. If you have a
subscription to MSDN, you can download SQL Server 2008 and Visual Studio 2008 from
http://msdn.microsoft.com. Otherwise, you can download a 180-day free SQL Server 2008
trial software from http://www.microsoft.com/sqlserver/2008/en/us/trial-software.aspx and
a 90-day free Visual Studio 2008 trial software from http://msdn.microsoft.com/
en-us/vstudio/aa700831.aspx.

You can find system requirements for SQL Server 2008 at
http://msdn.microsoft.com/en-us/library/ms143506.aspx and for Visual Studio 2008 at
http://msdn.microsoft.com/en-us/vs2008/products/bb894726.aspx.

Companion Content and Sample Database

These books feature a companion Web site that makes available to you all the code used in
the books, the errata, additional resources, and more. The companion Web site is
http.//www.insidetsql.com.

For each of these books the companion Web site provides a compressed file with the book’s
source code, a script file to create the books’ sample database, and additional files that are
required to run some of the code samples.

After downloading the source code, run the script file TSQLFundamentals2008.sqgl to
create the sample database InsideTSQL2008, which is used in many of the books’ code
samples. The data model of the InsideTSQL2008 database is provided in Figure I-1 for
your convenience.

Introduction

FIGURE I-1 Data model of the TSQLFundamentals2008 database

Find Additional Content Online

As new or updated material becomes available that complements your books, it will be
posted online on the Microsoft Press Online Windows Server and Client Web site. The type
of material you might find includes updates to books content, articles, links to companion

HR.Employees Sales.Orders Sales.Shippers
PK | empid PK orderid R PK | shipperid
11 | lastname FK2,I1 | custid companyname
firstname FK1,12 | empid phone
title 13 orderdate
titleofcourtesy requireddate
birthdate 14 shippeddate
h:’r;date FK3,15 :h'?':‘et"d Sales.Customers
address reig
city shipname PK | custid
region shipaddress
12 | postalcode shipcity — 12 [companyname
country shipregion contactname
phone 16 shippostalcode contacttitle
FK1 | mgrid shipcountry address
11 | city
14 | region
I3 | postalcode
Production.Suppliers Sales.OrderDetails country
phone
PK | supplierid PK,FK2,11 | orderid fax
PK,FK1,12 | pro i
I1 | companyname
contactname unitprice
contacttitle qty
address discount Sales.OrderValues
tr:;t):on orderid
2 pogstalcode CUSti‘_jd Sales.CustOrders
empi
c:;untry Production.Products shi:perid custid
phone X ordermonth
PK productid orderdate
fax val qty
12 productname
FK2,13 supplierid Sales.OrderTotalsByYear
- - FK1,11 | categoryid
Production.Categories unitprice orderyear
PK | categoryid discontinued qty
11 | categoryname
description

xxiii

content, errata, sample chapters, and more. This Web site is available at http;//microsoftpresssrv
ibredigital.com/serverclient/ and is updated periodically.

XXiv

Introduction

Support for These Books

Every effort has been made to ensure the accuracy of these books and the contents of
the companion Web site. As corrections or changes are collected, they will be added to a
Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the books or questions that are not
answered by visiting the sites above, please send them to me via e-mail to

itzik@SolidQ.com
or via postal mail to
Microsoft Press

Attn: Inside Microsoft SQL Server 2008: T-SQL Querying and Inside Microsoft SQL Server 2008:
T-SQL Programming Editor

One Microsoft Way
Redmond, WA 98052-6399.

Please note that Microsoft software product support is not offered through the above
addresses.

Chapter 1
Logical Query Processing

Observing true experts in different fields, you find a common practice that they all
share—mastering the basics. One way or another, all professions deal with problem solving.
All solutions to problems, complex as they may be, involve applying a mix of fundamental
techniques. If you want to master a profession, you need to build your knowledge upon
strong foundations. Put a lot of effort into perfecting your techniques, master the basics, and
you'll be able to solve any problem.

This book is about Transact-SQL (T-SQL) querying—learning key techniques and applying
them to solve problems. | can’t think of a better way to start the book than with a chapter
on the fundamentals of logical query processing. | find this chapter the most important in
the book—not just because it covers the essentials of query processing but also because SQL
programming is conceptually very different than any other sort of programming.

Transact-SQL is the Microsoft SQL Server dialect of, or extension to, the ANSI and ISO SQL
standards. Throughout the book, I'll use the terms SQL and T-SQL interchangeably. When
discussing aspects of the language that originated from ANSI SQL and are relevant to most
dialects, I'll typically use the term SQL. When discussing aspects of the language with the
implementation of SQL Server in mind, I'll typically use the term T-SQL. Note that the formal
language name is Transact-SQL, although it's commonly called 7-SQL. Most programmers,
including myself, feel more comfortable calling it T-SQL, so | made a conscious choice to use
the term T-SQL throughout the book.

Origin of SQL Pronunciation

Many English-speaking database professionals pronounce SQL as sequel, although the
correct pronunciation of the language is S-Q-L (“ess kyoo ell”). One can make educated
guesses about the reasoning behind the incorrect pronunciation. My guess is that there
are both historical and linguistic reasons.

As for historical reasons, in the 1970s, IBM developed a language named SEQUEL, which

was an acronym for Structured English QUEry Language. The language was designed to
manipulate data stored in a database system named System R, which was based on Dr. Edgar
F. Codd's model for relational database management systems (RDBMS). The acronym
SEQUEL was later shortened to SQL because of a trademark dispute. ANSI adopted SQL as a
standard in 1986, and ISO did so in 1987. ANSI declared that the official pronunciation of the
language is “ess kyoo ell,” but it seems that this fact is not common knowledge.

As for linguistic reasons, the sequel pronunciation is simply more fluent, mainly for
English speakers. | often use it myself for this reason.

2 Inside Microsoft SQL Server 2008: T-SQL Querying

@ More Info The coverage of SQL history in this chapter is based on an article from Wikipedia,
the free encyclopedia, and can be found at http.//en.wikipedia.org/wiki/SQL.

SQL programming has many unique aspects, such as thinking in sets, the logical processing order
of query elements, and three-valued logic. Trying to program in SQL without this knowledge

is a straight path to lengthy, poor-performing code that is difficult to maintain. This chapter’s
purpose is to help you understand SQL the way its designers envisioned it. You need to create
strong roots upon which all the rest will be built. Where relevant, I'll explicitly indicate elements
that are specific to T-SQL.

Throughout the book, I'll cover complex problems and advanced techniques. But in this chapter,
as mentioned, I'll deal only with the fundamentals of querying. Throughout the book, I'll also focus
on performance. But in this chapter, I'll deal only with the logical aspects of query processing. | ask
you to make an effort while reading this chapter not to think about performance at all. You'll find
plenty of performance coverage later in the book. Some of the logical query processing phases
that I'll describe in this chapter might seem very inefficient. But keep in mind that in practice, the
actual physical processing of a query might be very different than the logical one.

The component in SQL Server in charge of generating the actual work plan (execution plan)
for a query is the query optimizer. The optimizer determines in which order to access the
tables, which access methods and indexes to use, which join algorithms to apply, and so on.
The optimizer generates multiple valid execution plans and chooses the one with the lowest
cost. The phases in the logical processing of a query have a very specific order. In contrast,
the optimizer can often make shortcuts in the physical execution plan that it generates. Of
course, it will make shortcuts only if the result set is guaranteed to be the correct one—in
other words, the same result set you would get by following the logical processing phases.
For example, to use an index, the optimizer can decide to apply a filter much sooner than
dictated by logical processing.

For the aforementioned reasons, it's important to make a clear distinction between logical
and physical processing of a query.

Without further ado, let’s delve into logical query processing phases.

Logical Query Processing Phases

This section introduces the phases involved in the logical processing of a query. I'll first briefly
describe each step. Then, in the following sections, I'll describe the steps in much more detail
and apply them to a sample query. You can use this section as a quick reference whenever
you need to recall the order and general meaning of the different phases.

Chapter 1 Logical Query Processing 3

Listing 1-1 contains a general form of a query, along with step numbers assigned according
to the order in which the different clauses are logically processed.

LISTING 1-1 Logical query processing step numbers

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-3) <left_table> <join_type> JOIN <right_table> ON <on_predicate>
| (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>
| (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>
| (1-U) <Tleft_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_Tlist>;

Figure 1-1 contains a flow diagram representing logical query processing phases in detail.
Throughout the chapter I'll refer to the step numbers that appear in the diagram.

The first noticeable aspect of SQL that is different from other programming languages is the

order in which the code is processed. In most programming languages, the code is processed
in the order in which it is written. In SQL, the first clause that is processed is the FROM clause,
while the SELECT clause, which appears first, is processed almost last.

Each step generates a virtual table that is used as the input to the following step. These
virtual tables are not available to the caller (client application or outer query). Only the table
generated by the final step is returned to the caller. If a certain clause is not specified in a
query, the corresponding step is simply skipped. The following section briefly describes the
different logical steps.

Logical Query Processing Phases in Brief

Don't worry too much if the description of the steps doesn’t seem to make much sense
for now. These are provided as a reference. Sections that come after the scenario example
will cover the steps in much more detail.

B (1) FROM The FROM phase identifies the query’s source tables and processes table
operators. Each table operator applies a series of subphases. For example, the phases
involved in a join are (1-J1) Cartesian Product, (1-J2) ON Filter, (1-J3) Add Outer Rows.
The FROM phase generates virtual table VTL1.

B (1-J1) Cartesian Product This phase performs a Cartesian product (cross join) between
the two tables involved in the table operator, generating VT1-J1.

B (1-J2) ON Filter This phase filters the rows from VT1-J1 based on the predicate that
appears in the ON clause (<on_predicate>). Only rows for which the predicate evaluates
to TRUE are inserted into VT1-J2.

Inside Microsoft SQL Server 2008: T-SQL Querying

1
Entering FROM
First Yes
Table Operator
Exist? 4
Operator
Type?
r T T 1
JO*IN APELY PI\‘OT UNP*IVOT
7] 11 A 1-Al 1-P1 1-Ul
Q| Cartesian Product | o | © Apply Table Group Generate Copies
x| & w | & Expression
x | = v 5 ~ N/ ‘ ‘
E z 1-12 S 1-A2 1-P2 1-U2
No) ON Filter Add Outer Rows Spread Extract Element
1-)3 1-P3 1-U3
Add Outer Rows Aggregate Remove NULLs
Yes Another
L Table Operator
Exists?
No
Yes l
WHERE
No l
Yes ‘
GROUP BY
No l
Yes ‘
4
HAVING
No |
v
5-1
Evaluate
Expressions
‘ Yes
v
5-2
DISTINCT
No ‘
Yes l
5-3
TOP
No
X Yes
ORDER BY
ORDER BY
End

FIGURE 1-1 Logical query processing flow diagram

Chapter 1 Logical Query Processing 5

® (1-J3) Add Outer Rows If OUTER JOIN is specified (as opposed to CROSS JOIN or
INNER JOIN), rows from the preserved table or tables for which a match was not found
are added to the rows from VT1-J2 as outer rows, generating VT1-J3.

B (2) WHERE This phase filters the rows from VT1 based on the predicate that appears in
the WHERE clause (<where_predicate>). Only rows for which the predicate evaluates to
TRUE are inserted into VT2.

B (3) GROUP BY This phase arranges the rows from VT2 in groups based on the column
list specified in the GROUP BY clause, generating VT3. Ultimately, there will be one
result row per group.

B (4) HAVING This phase filters the groups from VT3 based on the predicate that
appears in the HAVING clause (<having_predicate>). Only groups for which the
predicate evaluates to TRUE are inserted into VT4.

m (5) SELECT This phase processes the elements in the SELECT clause, generating VT5.

® (5-1) Evaluate Expressions This phase evaluates the expressions in the SELECT list,
generating VT5-1.

B (5-2) DISTINCT This phase removes duplicate rows from VT5-1, generating VT5-2.

B (5-3) TOP This phase filters the specified top number or percentage of rows from
VT5-2 based on the logical ordering defined by the ORDER BY clause, generating the
table VT5-3.

B (6) ORDER BY This phase sorts the rows from VT5-3 according to the column list
specified in the ORDER BY clause, generating the cursor VC6.

Sample Query Based on Customers/Orders Scenario

To describe the logical processing phases in detail, I'll walk you through a sample query. First
run the following code to create the dbo.Customers and dbo.Orders tables, populate them
with sample data, and query them to show their contents:

SET NOCOUNT ON;
USE tempdb;

IF OBJECT_ID('dbo.Orders') IS NOT NULL DROP TABLE dbo.Orders;
IF OBJECT_ID('dbo.Customers') IS NOT NULL DROP TABLE dbo.Customers;
GO

CREATE TABLE dbo.Customers

(
customerid CHAR(5) NOT NULL PRIMARY KEY,
city VARCHAR(10) NOT NULL

);

Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE TABLE dbo.Orders

(

order

customerid CHAR(5S)

)
GO

INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

SELECT *

SELECT

id

INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO
INTO
INTO

FR
* FR

INT NOT NULL PRIMARY KEY,

dbo.Customers(customerid, city)
dbo.Customers(customerid, city)
dbo.Customers(customerid, city)
dbo.Customers(customerid, city)

dbo.Orders(orderid,
dbo.Orders(orderid,
dbo.Orders(orderid,
dbo.Orders(orderid,
dbo.Orders(orderid,
dbo.Orders(orderid,
dbo.Orders(orderid,

OM dbo.Customers;
OM dbo.Orders;

customerid)
customerid)
customerid)
customerid)
customerid)
customerid)
customerid)

This code generates the following output:

customerid city

Madrid
Madrid
Madrid
Zion

I'll use the query shown in Listing 1-2 as my example. The query returns customers from
Madrid who placed fewer than three orders (including zero orders), along with their order

NULL REFERENCES Customers(customerid)

VALUES('FISSA', 'Madrid');
VALUES('FRNDO', 'Madrid');
VALUES('KRLOS', 'Madrid');
VALUES('MRPHS', 'Zion');

VALUES(1,
VALUES(2,
VALUES(3,
VALUES (4,
VALUES(5,
VALUES (6,
VALUES(7,

"FRNDO') ;
"FRNDO ") ;
"KRLOS ') ;
"KRLOS');
"KRLOS');
"MRPHS ') ;
NULL) ;

counts. The result is sorted by order count, from smallest to largest.

LISTING 1-2 Query: Madrid customers with fewer than three orders

SELECT C.customerid, COUNT(O.orderid) AS numorders
FROM dbo.Customers AS C
LEFT OUTER JOIN dbo.Orders AS O

ON C.customerid = O.customerid
WHERE C.city = 'Madrid’
GROUP BY C.customerid
HAVING COUNT(O.orderid) < 3
ORDER BY numorders;

Chapter 1 Logical Query Processing 7

This query returns the following output:

customerid numorders

Both FISSA and FRNDO are customers from Madrid who placed fewer than three orders. Examine
the query and try to read it while following the steps and phases described in Listing 1-1, Figure 1-1,
and the section “Logical Query Processing Phases in Brief.” If this is your first time thinking of a
query in such terms, you might be confused. The following section should help you understand the
nitty-gritty details.

Logical Query Processing Phase Details

This section describes the logical query processing phases in detail by applying them to the
given sample query.

Step 1: The FROM Phase

The FROM phase identifies the table or tables that need to be queried, and if table operators
are specified, this phase processes those operators from left to right. Each table operator
operates on one or two input tables and returns an output table. The result of a table
operator is used as the left input to the next table operator—if one exists—and as the input
to the next logical query processing phase otherwise. Each table operator has its own set

of processing subphases. For example, the subphases involved in a join are (1-J1) Cartesian
Product, (1-J2) ON Filter, (1-J3) Add Outer Rows. Here | will provide a description of the
subphases involved in a join; later in the chapter, under “Table Operators,” I'll describe the
other table operators. The FROM phase generates virtual table VT1.

Step 1-J1: Perform Cartesian Product (Cross Join)

This is the first of three subphases that are applicable to a join table operator. This subphase
performs a Cartesian product (a cross join, or an unrestricted join) between the two tables
involved in the join and, as a result, generates virtual table VT1-J1. This table contains one
row for every possible choice of a row from the left table and a row from the right table.

If the left table contains n rows and the right table contains m rows, VT1-J1 will contain
nxm rows. The columns in VT1-J1 are qualified (prefixed) with their source table names (or
table aliases, if you specified them in the query). In the subsequent steps (step 1-J2 and on),
a reference to a column name that is ambiguous (appears in more than one input table)
must be table-qualified (for example, C.customerid). Specifying the table qualifier for column
names that appear in only one of the inputs is optional (for example, O.orderid or just
orderid).

Inside Microsoft SQL Server 2008: T-SQL Querying
Apply step 1-J1 to the sample query (shown in Listing 1-2):
FROM dbo.Customers AS C ... JOIN dbo.Orders AS O

As a result, you get the virtual table VT1-J1 (shown in Table 1-1) with 28 rows (4x7).

TABLE 1-1 Virtual Table VT1-J1 Returned from Step 1-J1

C.customerid C.city O.orderid O.customerid
FISSA Madrid 1 FRNDO
FISSA Madrid 2 FRNDO
FISSA Madrid 3 KRLOS
FISSA Madrid 4 KRLOS
FISSA Madrid 5 KRLOS
FISSA Madrid 6 MRPHS
FISSA Madrid 7 NULL
FRNDO Madrid 1 FRNDO
FRNDO Madrid 2 FRNDO
FRNDO Madrid 3 KRLOS
FRNDO Madrid 4 KRLOS
FRNDO Madrid 5 KRLOS
FRNDO Madrid 6 MRPHS
FRNDO Madrid 7 NULL
KRLOS Madrid 1 FRNDO
KRLOS Madrid 2 FRNDO
KRLOS Madrid 3 KRLOS
KRLOS Madrid 4 KRLOS
KRLOS Madrid 5 KRLOS
KRLOS Madrid 6 MRPHS
KRLOS Madrid 7 NULL
MRPHS Zion 1 FRNDO
MRPHS Zion 2 FRNDO
MRPHS Zion 3 KRLOS
MRPHS Zion 4 KRLOS
MRPHS Zion 5 KRLOS
MRPHS Zion 6 MRPHS
MRPHS Zion 7 NULL

Step 1-J2: Apply ON Filter (Join Condition)

The ON filter is the first of three possible filters (ON, WHERE, and HAVING) that can be
specified in a query. The predicate in the ON filter is applied to all rows in the virtual table
returned by the previous step (VT1-J1). Only rows for which the <on_predicate> is TRUE
become part of the virtual table returned by this step (VT1-J2).

Chapter 1 Logical Query Processing 9

Three-Valued Logic

Allow me to digress a bit to cover some important aspects of SQL related to this

step. The possible values of a predicate (logical expression) in SQL are TRUE, FALSE,
and UNKNOWN. This is referred to as three-valued logic and is unique to SQL.

Logical expressions in most programming languages can be only TRUE or FALSE. The
UNKNOWN logical value in SQL typically occurs in a logical expression that involves a
NULL (for example, the logical value of each of these three expressions is UNKNOWN:
NULL > 42; NULL = NULL; X + NULL > Y). The mark NULL represents a missing value.
When comparing a missing value to another value (even another NULL), the logical
result is always UNKNOWN.

Dealing with UNKNOWN logical results and NULLs can be very confusing. While NOT
TRUE is FALSE, and NOT FALSE is TRUE, the opposite of UNKNOWN (NOT UNKNOWN)
is still UNKNOWN.

UNKNOWN logical results and NULLs are treated inconsistently in different elements of
the language. For example, all query filters (ON, WHERE, and HAVING) treat UNKNOWN
like FALSE. A row for which a filter is UNKNOWN is eliminated from the result set. On
the other hand, an UNKNOWN value in a CHECK constraint is actually treated like TRUE.
Suppose you have a CHECK constraint in a table to require that the salary column be
greater than zero. A row entered into the table with a NULL salary is accepted because
(NULL > 0) is UNKNOWN and treated like TRUE in the CHECK constraint.

A comparison between two NULLs in a filter yields UNKNOWN, which, as | mentioned
earlier, is treated like FALSE—as if one NULL is different than another.

On the other hand, for UNIQUE constraints, set operators (such as UNION and EXCEPT),
and sorting or grouping operations, NULLs are treated as equal:

B You cannot insert into a table two rows with a NULL in a column that has a
UNIQUE constraint defined on it. T-SQL violates the standard on this point.

® A GROUP BY clause groups all NULLs into one group.
B An ORDER BY clause sorts all NULLs together.

B Set operators treat NULLs as equal when comparing rows from the two sets.

In short, to spare yourself some grief it's a good idea to be aware of the way UNKNOWN
logical results and NULLs are treated in the different elements of the language.

Apply step 1-J2 to the sample query:
ON C.customerid = O.customerid

The first column of Table 1-2 shows the value of the logical expression in the ON filter for the
rows from VT1-J1.

10 Inside Microsoft SQL Server 2008: T-SQL Querying

TABLE 1-2 Logical value of ON Predicate for Rows from VT1-J1

Logical Value C.customerid C.city O.orderid O.customerid
FALSE FISSA Madrid 1 FRNDO
FALSE FISSA Madrid 2 FRNDO
FALSE FISSA Madrid 3 KRLOS
FALSE FISSA Madrid 4 KRLOS
FALSE FISSA Madrid 5 KRLOS
FALSE FISSA Madrid 6 MRPHS
UNKNOWN FISSA Madrid 7 NULL
TRUE FRNDO Madrid 1 FRNDO
TRUE FRNDO Madrid 2 FRNDO
FALSE FRNDO Madrid 3 KRLOS
FALSE FRNDO Madrid 4 KRLOS
FALSE FRNDO Madrid 5 KRLOS
FALSE FRNDO Madrid 6 MRPHS
UNKNOWN FRNDO Madrid 7 NULL
FALSE KRLOS Madrid 1 FRNDO
FALSE KRLOS Madrid 2 FRNDO
TRUE KRLOS Madrid 3 KRLOS
TRUE KRLOS Madrid 4 KRLOS
TRUE KRLOS Madrid 5 KRLOS
FALSE KRLOS Madrid 6 MRPHS
UNKNOWN KRLOS Madrid 7 NULL
FALSE MRPHS Zion 1 FRNDO
FALSE MRPHS Zion 2 FRNDO
FALSE MRPHS Zion 3 KRLOS
FALSE MRPHS Zion 4 KRLOS
FALSE MRPHS Zion 5 KRLOS
TRUE MRPHS Zion 6 MRPHS
UNKNOWN MRPHS Zion 7 NULL

Only rows for which the <on_predicate> is TRUE are inserted into VT1-J2, shown in Table 1-3.

TABLE 1-3 Virtual Table VT1-J2 Returned from Step 1-J2

Logical Value C.customerid C.city O.orderid O.customerid
TRUE FRNDO Madrid 1 FRNDO
TRUE FRNDO Madrid 2 FRNDO
TRUE KRLOS Madrid 3 KRLOS
TRUE KRLOS Madrid 4 KRLOS
TRUE KRLOS Madrid 5 KRLOS
TRUE MRPHS Zion 6 MRPHS

Q

Chapter 1 Logical Query Processing 11
Step 1-J3: Add Outer Rows

This step occurs only for an outer join. For an outer join, you mark one or both input tables
as preserved by specifying the type of outer join (LEFT, RIGHT, or FULL). Marking a table

as preserved means that you want all of its rows returned, even when filtered out by the
<on_predicate>. A left outer join marks the left table as preserved, a right outer join marks
the right one, and a full outer join marks both. Step 1-J3 returns the rows from VT1-J2, plus
rows from the preserved table(s) for which a match was not found in step 1-J2. These added
rows are referred to as outer rows. NULLs are assigned to the attributes (column values) of
the nonpreserved table in the outer rows. As a result, virtual table VT1-J3 is generated.

In our example, the preserved table is Customers:
Customers AS C LEFT OUTER JOIN Orders AS O

Only customer FISSA did not yield any matching orders (and thus wasn't part of VT1-J2). Therefore,
a row for FISSA is added to VT1-J2, with NULLs for the Orders attributes. The result is virtual table
VT1-J3 (shown in Table 1-4). Because the FROM clause of the sample query has no more table
operators, the virtual table VT1-J3 is also the virtual table VT1 returned from the FROM phase.

TABLE 1-4 Virtual Table VT1-J3 (also VT1) Returned from Step 1-J3

C.customerid C.city O.orderid O.customerid
FRNDO Madrid 1 FRNDO
FRNDO Madrid 2 FRNDO
KRLOS Madrid 3 KRLOS

KRLOS Madrid 4 KRLOS

KRLOS Madrid 5 KRLOS

MRPHS Zion 6 MRPHS

FISSA Madrid NULL NULL

Note If multiple table operators appear in the FROM clause, they are processed from left to
right. The result of each table operator is provided as the left input to the next table operator.
The final virtual table will be used as the input for the next step.

Step 2: The WHERE Phase

The WHERE filter is applied to all rows in the virtual table returned by the previous step. Those
rows for which <where_predicate> is TRUE make up the virtual table returned by this step (VT2).

Caution Because the data is not yet grouped, you cannot use aggregates here—for example, you
cannot write WHERE orderdate = MAX(orderdate). Also, you cannot refer to column aliases created
by the SELECT list because the SELECT list was not processed yet—for example, you cannot write
SELECT YEAR(orderdate) AS orderyear ... WHERE orderyear > 2008.

12

Inside Microsoft SQL Server 2008: T-SQL Querying
Apply the filter in the sample query:
WHERE C.city = 'Madrid’

The row for customer MRPHS from VT1 is removed because the city is not Madrid, and virtual
table VT2, which is shown in Table 1-5, is generated.

TABLE 1-5 Virtual Table VT2 Returned from Step 2

C.customerid C.city O.orderid O.customerid
FRNDO Madrid 1 FRNDO
FRNDO Madrid 2 FRNDO
KRLOS Madrid 3 KRLOS

KRLOS Madrid 4 KRLOS

KRLOS Madrid 5 KRLOS

FISSA Madrid NULL NULL

A confusing aspect of queries containing an OUTER JOIN clause is whether to specify a logical
expression in the ON filter or in the WHERE filter. The main difference between the two is that
ON is applied before adding outer rows (step 1-J3), while WHERE is applied afterwards. An
elimination of a row from the preserved table by the ON filter is not final because step 1-J3 will
add it back; an elimination of a row by the WHERE filter, by contrast, is final. Bearing this in
mind should help you make the right choice.

For example, suppose you want to return certain customers and their orders from the Customers
and Orders tables. The customers you want to return are only Madrid customers—both those
who placed orders and those who did not. An outer join is designed exactly for such a request.
You perform a left outer join between Customers and Orders, marking the Customers table as
the preserved table. To be able to return customers who placed no orders, you must specify the
correlation between Customers and Orders in the ON clause (ON C.customerid = O.customerid).
Customers with no orders are eliminated in step 1-J2 but added back in step 1-J3 as outer rows.
However, because you want to return only Madrid customers you must specify the city filter in
the WHERE clause (WHERE C.city = ‘Madrid’). Specifying the city filter in the ON clause would
cause non-Madrid customers to be added back to the result set by step 1-J3.

Tip This logical difference between the ON and WHERE clauses exists only when using an outer
join. When you use an inner join, it doesn't matter where you specify your logical expressions
because step 1-J3 is skipped. The filters are applied one after the other with no intermediate step
between them.

Step 3: The GROUP BY Phase

The GROUP BY phase associates rows from the table returned by the previous step to groups
according to the <group_by_specification>. | will discuss this specification in detail in Chapter 8,

Chapter 1 Logical Query Processing 13

“Aggregating and Pivoting Data,” but for now, assume that it specifies a single list of attributes
to group by. This list is called the grouping set.

In this phase, the rows from the table returned by the previous step are arranged in groups.
Each unique combination of values of the attributes that belong to the grouping set identifies
a group. Each base row from the previous step is associated to one and only one group. Virtual
table VT3 consists of the rows of VT2 arranged in groups (the raw information) along with the
group identifiers (the groups information).

Apply step 3 to the sample query:
GROUP BY C.customerid

You get the virtual table VT3 shown in Table 1-6.

TABLE 1-6 Virtual Table VT3 Returned from Step 3

Groups Raw
C.customerid C.customerid C.city O.orderid O.customerid
FRNDO FRNDO Madrid 1 FRNDO
FRNDO Madrid 2 FRNDO
KRLOS KRLOS Madrid 3 KRLOS
KRLOS Madrid 4 KRLOS
KRLOS Madrid 5 KRLOS
FISSA FISSA Madrid NULL NULL

Eventually, a query that contains a GROUP BY clause will generate one row per group (unless
filtered out). Consequently, when GROUP BY is specified in a query, all subsequent steps (HAVING,
SELECT, and so on) can specify only expressions that have a scalar (singular) value per group. These
expressions can include columns or expressions from the GROUP BY list—such as C.customerid in
the sample query here—or aggregate functions, such as COUNT(O.orderid).

Examine VT3 in Table 1-6 and think what the query should return for customer FRNDO's
group if the SELECT list you specified had been SELECT C.customerid, O.orderid. There are two
different orderid values in the group; therefore, the answer is not a scalar. SQL doesn't allow
such a request. On the other hand, if you specify SELECT C.customerid, COUNT(O.orderid) AS
numorders, the answer for FRNDO is a scalar: it's 2.

This phase considers NULLs as equal. That is, all NULLs are grouped into one group, just like a
known value.

Step 4: The HAVING Phase

The HAVING filter is applied to the groups in the table returned by the previous step. Only
groups for which the <having_predicate> is TRUE become part of the virtual table returned
by this step (VT4). The HAVING filter is the only filter that applies to the grouped data.

14

Inside Microsoft SQL Server 2008: T-SQL Querying

Apply this step to the sample query:
HAVING COUNT(O.orderid) < 3

The group for KRLOS is removed because it contains three orders. Virtual table VT4, which is
shown in Table 1-7, is generated.

TABLE 1-7 Virtual Table VT4 Returned from Step 4

C.customerid C.customerid C.city O.orderid O.customerid

FRNDO FRNDO Madrid 1 FRNDO
FRNDO Madrid 2 FRNDO

FISSA FISSA Madrid NULL NULL

Note It is important to specify COUNT(O.orderid) here and not COUNT(*). Because the join is an
outer one, outer rows were added for customers with no orders. COUNT(*) would have added
outer rows to the count, undesirably producing a count of one order for FISSA. COUNT(O.orderid)
correctly counts the number of orders for each customer, producing the desired value 0 for FISSA.
Remember that COUNT(<expression>) ignores NULLs just like any other aggregate function.

Note An aggregate function does not accept a subquery as an input—for example, HAVING
SUM((SELECT ...)) > 10.

Step 5: The SELECT Phase

Though specified first in the query, the SELECT clause is processed only at the fifth step. The
SELECT phase constructs the table that will eventually be returned to the caller. This phase
involves three subphases: (5-1) Evaluate Expressions, (5-2) Apply DISTINCT Clause, (5-3) Apply
TOP Option.

Step 5-1: Evaluate Expressions

The expressions in the SELECT list can return base columns and manipulations of base
columns from the virtual table returned by the previous step. Remember that if the query is
an aggregate query, after step 3 you can refer to base columns from the previous step only
if they are part of the groups section (GROUP BY list). If you refer to columns from the raw
section, they must be aggregated. Base columns selected from the previous step maintain
their column names unless you alias them (for example, coll AS c1). Expressions that are not
base columns should be aliased to have a column name in the result table—for example,
YEAR(orderdate) AS orderyear.

Chapter 1 Logical Query Processing 15

Important Aliases created by the SELECT list cannot be used by earlier steps—for example, in
the WHERE phase. In fact, expression aliases cannot even be used by other expressions within
the same SELECT list. The reasoning behind this limitation is another unique aspect of SQL; many
operations are all-at-once operations. For example, in the following SELECT list, the logical order
in which the expressions are evaluated should not matter and is not guaranteed: SELECT cI +

1 ASel, c2 + 1ASe2 Therefore, the following SELECT list is not supported: SELECT c1 + 1 AS

el, el + 1 AS e2 You're allowed to use column aliases only in steps following the SELECT phase,
such as the ORDER BY phase—for example, SELECT YEAR(orderdate) AS orderyear ... ORDER BY
orderyear.

The concept of an all-at-once operation can be hard to grasp. For example, in most programming
environments, to swap values between variables you use a temporary variable. However, to swap
table column values in SQL, you can use:

UPDATE dbo.T1 SET cl = c2, c2 = cl;

Logically, you should assume that the whole operation takes place at once. It is as if the table is
not modified until the whole operation finishes and then the result replaces the source. For similar
reasons, the following UPDATE would update all of T1's rows, adding to c1 the maximum c1 value
from T1 when the update started:

UPDATE dbo.T1 SET c1 = c1 + (SELECT MAX(cl) FROM dbo.T1);

Don't be concerned that the maximum c1 value might keep changing as the operation proceeds;
it does not because the operation occurs all at once.

Apply this step to the sample query:
SELECT C.customerid, COUNT(O.orderid) AS numorders

You get the virtual table VT5-1, which is shown in Table 1-8. Because no other subphases
(DISTINCT and TOP) of the SELECT phase are applied in the sample query, the virtual table
VT5-1 returned by this subphase is also the virtual table VTS5 returned by the SELECT phase.

TABLE 1-8 Virtual Table VT5-1 (also VT5) Returned from Step 5

C.customerid numorders
FRNDO 2
FISSA 0

Step 5-2: Apply the DISTINCT Clause

If a DISTINCT clause is specified in the query, duplicate rows are removed from the virtual
table returned by the previous step, and virtual table VT5-2 is generated.

Note SQL deviates from the relational model by allowing a table to have duplicate rows (when
a primary key or unique constraint is not enforced) and a query to return duplicate rows in the

result. A relation in the relational model represents a set from set theory, and a set (as opposed
to a multiset) has no duplicates. Using the DISTINCT clause you can ensure that a query returns
unique rows and in this sense conform to the relational model.

16

Inside Microsoft SQL Server 2008: T-SQL Querying

Step 5-2 is skipped in our example because DISTINCT is not specified in the sample query.
In our particular example, it would remove no rows.

Step 5-3: Apply the TOP Option

The TOP option is a feature specific to T-SQL that allows you to specify a number or percentage
of rows (rounded up) to return. The specified number of rows is selected based on the query’s
ORDER BY clause. Traditionally, and according to the ANSI SQL standard, ORDER BY is supposed
to serve a presentation purpose. However, when the TOP option is specified, the ORDER BY
clause also serves a logical purpose— answering the question “top according to what order?”
Table VT5-3 is generated.

As mentioned, this step relies on the query’s ORDER BY clause to determine which rows are
considered the “first” requested number of rows. If an ORDER BY clause with a unique ORDER
BY list is specified in a query, the result is deterministic. That is, only one correct result is possible,
containing the first requested number of rows based on the specified order. Similarly, when an
ORDER BY clause is specified with a non-unique ORDER BY list but the TOP option is specified
WITH TIES, the result is also deterministic. SQL Server inspects the last row that was returned
and returns all other rows from the table that have the same sort values as the last row.

However, when a non-unique ORDER BY list is specified without the WITH TIES option, or
ORDER BY is not specified at all, a TOP query is nondeterministic. That is, the rows returned
are the ones that SQL Server happened to access first, and there might be different results
that are considered correct. If you want to guarantee determinism, a TOP query must have
either a unique ORDER BY list or the WITH TIES option.

Step 5-3 is skipped in our example because TOP is not specified.

Step 6: The Presentation ORDER BY Phase

The rows from the previous step are sorted according to the column list specified in the
ORDER BY clause, returning the cursor VC6. The ORDER BY clause is the only step where
column aliases created in the SELECT phase can be reused.

If DISTINCT is specified, the expressions in the ORDER BY clause have access only to the
virtual table returned by the previous step (VT5). If DISTINCT is not specified expressions in
the ORDER BY clause can access both the input and the output virtual tables of the SELECT
phase. That is, in the ORDER BY clause you can specify any expression that would have been
allowed in the SELECT clause. Namely, you can sort by expressions that you don't end up
returning in the final result set.

There is a reason for not allowing access to expressions you're not returning if DISTINCT

is specified. When adding expressions to the SELECT list, DISTINCT can potentially change
the number of rows returned. Without DISTINCT, of course, changes in the SELECT list don’t
affect the number of rows returned.

Chapter 1 Logical Query Processing 17

In our example, because DISTINCT is not specified, the ORDER BY clause has access to both
VT4, shown in Table 1-7, and VTS5, shown in Table 1-8.

In the ORDER BY clause, you can also specify ordinal positions of result columns from the
SELECT list. For example, the following query sorts the orders first by customerid and then by
orderid:

SELECT orderid, customerid FROM dbo.Orders ORDER BY 2, 1;

However, this practice is not recommended because you might make changes to the SELECT
list and forget to revise the ORDER BY list accordingly. Also, when the query strings are long,
it's hard to figure out which item in the ORDER BY list corresponds to which item in the
SELECT list.

Important This step is different than all other steps in the sense that it doesn't return a valid
table; instead, it returns a cursor. Remember that SQL is based on set theory. A set doesn’t have

a predetermined order to its rows: It's a logical collection of members, and the order of the
members shouldn’t matter. A query with a presentation ORDER BY clause returns an object with
rows organized in a particular order. ANSI calls such an object a cursor. Understanding this step is
one of the most fundamental steps to correctly understanding SQL.

When describing the contents of a table, most people (including me) routinely depict the
rows in a certain order. However, a table represents a set (or multiset if duplicates exist), and
a set has no order, so such depiction can cause some confusion by implying a certain order.
Figure 1-2 shows an example for depicting the content of tables in a more correct way that
doesn’t imply order.

Customers _ Orders _
(Customerid, city) (orderid, customerid)

(FRNDO, Madrid) (5, KRLOS)

(6, MRPHS)

(KRLOS, Madrid) (3, KRLOS)

@ FRNDO) (7. NULL)
(4, KRLOS) (1, FRNDO)

(FISSA, Madrid)

(MRPHS, Zion)

FIGURE 1-2 Customers and Orders sets

Note Although SQL doesn't assume any given order to a table’s rows, it does maintain ordinal

positions for columns based on creation order. Specifying SELECT * (although a bad practice for
several reasons that I'll describe later in the book) guarantees the columns would be returned in
creation order. In this respect SQL deviates from the relational model.

18

Inside Microsoft SQL Server 2008: T-SQL Querying

Because this step doesn't return a table (it returns a cursor), a query with a presentation
ORDER BY clause cannot be used to define a table expression—that is, a view, an inline
table-valued function, a derived table, or a common table expression (CTE). Rather, the result
must be returned to the client application that can consume cursor records one at a time, in
order. For example, the following derived table query is invalid and produces an error:

SELECT *

FROM (SELECT orderid, customerid
FROM dbo.Orders
ORDER BY orderid DESC) AS D;

Similarly, the following view is invalid:

CREATE VIEW dbo.VSortedOrders
AS

SELECT orderid, customerid

FROM dbo.Orders

ORDER BY orderid DESC;

Go

In SQL, no query with an ORDER BY clause is allowed in a table expression. In T-SQL, there is an
exception to this rule—when the TOP option is also specified. This exception has to do with a
problematic aspect of the design of the TOP option that causes a lot of confusion. The TOP
option is logically processed as part of the SELECT phase (step 5-3), before the Presentation
ORDER BY phase (step 6). Its purpose is to filter the requested number or percentage of
rows based on a logical definition of order. Unfortunately, the TOP option is not designed
with its own ORDER BY clause; rather, its logical ordering is based on the same ORDER BY
clause that is normally used for presentation purposes. This fact makes the TOP option
restricted in the sense that you cannot define one order for the TOP option and another
for presentation. Also, things can get quite confusing when you try to figure out the nature
of the result of a TOP query. Is it a table (no guaranteed order) or a cursor? Because no
standard defines TOP, it's a matter of what the SQL Server developers envisioned. When a
TOP query is specified as the outermost query rather than defining a table expression, the
ORDER BY clause serves two different purposes. One is to define logical precedence among
rows for the TOP option in step 5-3, and the other is to define presentation order in step 6
in the result cursor. Consider the following query as an example:

SELECT TOP (3) orderid, customerid
FROM dbo.Orders
ORDER BY orderid DESC;

You're guaranteed to get the three rows with the highest order IDs, and you're also
guaranteed to get them sorted in the output based on orderid descending. Here's the
output of this query:

orderid customerid
11077 RATTC
11076 BONAP

11075 RICSU

Chapter 1 Logical Query Processing 19

However, if a TOP query with an ORDER BY clause is used to define a table expression,
it's supposed to represent a table with no guaranteed order. Therefore, in such a case
the ORDER BY clause is only guaranteed to define logical order for the TOP option,
while presentation order is not guaranteed. For example, the following query does not
guarantee presentation order:

SELECT *

FROM (SELECT TOP (3) orderid, customerid
FROM dbo.Orders
ORDER BY orderid DESC) AS D;

Of course, SQL Server has no reason to change the order of the rows in the output if it scans
them in index order or sorts them to filter the requested number of rows, but the point

I'm trying to make is that in this case presentation order in the output is not guaranteed.
Programmers who don't understand this point—or the difference between a table and a
cursor—try to exploit the TOP option in absurd ways, for example, by trying to create a
sorted view:

CREATE VIEW dbo.VSortedOrders
AS

SELECT TOP (100) PERCENT orderid, customerid
FROM dbo.Orders

ORDER BY orderid DESC;

GO

A view is supposed to represent a table, and a table has no guaranteed order. SQL Server allows
the use of the ORDER BY clause in a view when TOP is also specified, but because the query is
used to define a table expression, the only guarantee that you get is that the ORDER BY clause will
serve the logical meaning for TOP; you don't get a guarantee for presentation order. Therefore,

if you run the following code, you're not guaranteed to get the rows in the output sorted by
orderid descending:

SELECT orderid, customerid FROM dbo.VSortedOrders;

So remember, don't assume any particular order for a table’s rows. Conversely, don't specify
an ORDER BY clause unless you really need the rows sorted or need to describe the ordering
for a TOP option. Sorting has a cost—SQL Server needs to perform an ordered index scan
or apply a sort operator.

The ORDER BY clause considers NULLs as equal. That is, NULLs are sorted together. ANSI
leaves the question of whether NULLs are sorted lower or higher than known values up to
implementations, which must be consistent. T-SQL sorts NULLs as lower than known values
(first).

Apply this step to the sample query:

ORDER BY numorders

20

Inside Microsoft SQL Server 2008: T-SQL Querying

You get the cursor VC6 shown in Table 1-9.

TABLE 1-9 Cursor VC6 Returned from Step 6

C.customerid numorders
FISSA 0
FRNDO 2

Further Aspects of Logical Query Processing

B

This section covers further aspects of logical query processing, including table operators
(JOIN, APPLY, PIVOT, and UNPIVOT), the OVER clause, and set operators (UNION, EXCEPT,
and INTERSECT). Note that | could say much more about these language elements besides
their logical query processing aspects, but that's the focus of this chapter. Also, if a language
element described in this section is completely new to you (for example, PIVOT, UNPIVOT,
or APPLY), it might be a bit hard to fully comprehend its meaning at this point. Later in the
book I'll conduct more detailed discussions including uses, performance aspects, and so on.
You can then return to this chapter and read about the logical query processing aspects of
that language element again to better comprehend its meaning.

Table Operators

SQL Server 2008 supports four types of table operators in the FROM clause of a query: JOIN,
APPLY, PIVOT, and UNPIVOT.

Note APPLY, PIVOT, and UNPIVOT are not ANSI operators; rather, they are extensions specific to
T-SQL.

| covered the logical processing phases involved with joins earlier and will also discuss joins in
more detail in Chapter 7, “Joins and Set Operations.” Here I'll briefly describe the other three
operators and the way they fit in the logical query processing model.

Table operators get one or two tables as inputs. Call them left input and right input based

on their position in respect to the table operator keyword (JOIN, APPLY, PIVOT, UNPIVOT).
Just like joins, all table operators get a virtual table as their left input. The first table operator
that appears in the FROM clause gets a table expression as the left input and returns a virtual
table as a result. A table expression can stand for many things: a real table, a temporary
table, a table variable, a derived table, a CTE, a view, or a table-valued function.

More Info For details on table expressions, please refer to Chapter 6, “Subqueries, Table
Expressions, and Ranking Functions.”

Chapter 1 Logical Query Processing 21

The second table operator that appears in the FROM clause gets as its left input the virtual
table returned from the previous table operation.

Each table operator involves a different set of steps. For convenience and clarity, I'll prefix the
step numbers with the initial of the table operator (J for JOIN, A for APPLY, P for PIVOT, and U
for UNPIVOT).

Following are the four table operators along with their elements:

(J) <left_table_expression>
{CROSS | INNER | OUTER} JOIN <right_table_expression>
ON <on_predicate>

(A) <left_table_expression>
{CROSS | OUTER} APPLY <right_table_expression>

(P) <left_table_expression>
PIVOT (<aggregate_func(<aggregation_element>)> FOR
<spreading_element> IN(<target_col_Tist>))
AS <result_table_alias>

(U) <left_table_expression>
UNPIVOT (<target_values_col> FOR
<target_names_col> IN(<source_col_Tist>))
AS <result_table_alias>

As a reminder, a join involves a subset (depending on the join type) of the following steps:
1. J1: Apply Cartesian Product
2. J2: Apply ON Filter
3. J3: Add Outer Rows

APPLY

The APPLY operator (depending on the apply type) involves one or both of the following two
steps:

1. Al: Apply Right Table Expression to Left Table Rows
2. A2: Add Outer Rows

The APPLY operator applies the right table expression to every row from the left input. The
right table expression can refer to the left input’s columns. The right input is evaluated once for
each row from the left. This step unifies the sets produced by matching each left row with the
corresponding rows from the right table expression, and this step returns the combined result.

Step Al is applied in both CROSS APPLY and OUTER APPLY. Step A2 is applied only for OUTER
APPLY. CROSS APPLY doesn't return an outer (left) row if the inner (right) table expression
returns an empty set for it. OUTER APPLY will return such a row, with NULLs as placeholders
for the inner table expression’s attributes.

Inside Microsoft SQL Server 2008: T-SQL Querying

For example, the following query returns the two orders with the highest order IDs for each
customer:

SELECT C.customerid, C.city, A.orderid
FROM dbo.Customers AS C
CROSS APPLY
(SELECT TOP (2) O.orderid, O.customerid
FROM dbo.Orders AS O
WHERE O.customerid = C.customerid
ORDER BY orderid DESC) AS A;

This query generates the following output:

customerid city orderid
FRNDO Madrid 2
FRNDO Madrid 1
KRLOS Madrid 5
KRLOS Madrid 4
MRPHS Zion 6

Notice that FISSA is missing from the output because the table expression A returned an
empty set for it. If you also want to return customers who placed no orders, use OUTER
APPLY as follows:

SELECT C.customerid, C.city, A.orderid
FROM dbo.Customers AS C
OUTER APPLY
(SELECT TOP (2) 0O.orderid, O.customerid
FROM dbo.Orders AS O
WHERE O.customerid = C.customerid
ORDER BY orderid DESC) AS A;

This query generates the following output:

customerid city orderid
FISSA Madrid NULL
FRNDO Madrid 2

FRNDO Madrid 1

KRLOS Madrid 5

KRLOS Madrid 4

MRPHS Zion 6

More Info For more details on the APPLY operator, refer to Chapter 9, “TOP and APPLY."

PIVOT

The PIVOT operator allows you to rotate, or pivot, data between columns and rows, performing
aggregations along the way.

Chapter 1 Logical Query Processing 23

Suppose you wanted to query the Sales.OrderValues view in the InsideTSQL2008 sample
database (see the book’s introduction for details on the sample database) and return the total
value of orders handled by each employee for each order year. You want the output to have a
row for each employee, a column for each order year, and the total value in the intersection of
each employee and year. The following PIVOT query allows you to achieve this:

USE InsideTSQL2008;

SELECT *
FROM (SELECT empid, YEAR(orderdate) AS orderyear, val
FROM Sales.OrderValues) AS OV
PIVOT(SUM(val) FOR orderyear IN([2006],[2007],[2008])) AS P;

This query generates the following output:

empid 2006 2007 2008

3 18223.96 108026.17 76562.75
6 16642.61 43126.38 14144.16
9 9894.52 26310.39 41103.17
7 15232.16 60471.19 48864.89
1 35764.52 93148.11 63195.02
4 49945.12 128809.81 54135.94
2 21757.06 70444.14 74336.56
5 18383.92 30716.48 19691.90
8 22240.12 56032.63 48589.54

Don't get distracted by the subquery that generates the derived table OV. As far as you're
concerned, the PIVOT operator gets a table expression called OV as its left input, with a row
for each order, with the employee ID (empid), order year (orderyear), and order value (val).
The PIVOT operator involves the following three logical phases:

1. P1: Grouping
2. P2: Spreading
3. P3: Aggregating

The first phase (P1) is tricky. You can see in the query that the PIVOT operator refers to two

of the columns from OV as input arguments (val and orderyear). The first phase implicitly
groups the rows from OV based on all columns that weren't mentioned in PIVOT's inputs, as
though a hidden GROUP BY were there. In our case, only the empid column wasn't mentioned
anywhere in PIVOT's input arguments. So you get a group for each employee.

Note PIVOT's implicit grouping phase doesn't affect any explicit GROUP BY clause in a query.
The PIVOT operation will yield a virtual result table for input to the next logical phase, be it
another table operation or the WHERE phase. And as | described earlier in the chapter, a GROUP
BY phase might follow the WHERE phase. So when both PIVOT and GROUP BY appear in a query,
you get two separate grouping phases—one as the first phase of PIVOT (P1) and a later one as
the query’s GROUP BY phase.

24

Inside Microsoft SQL Server 2008: T-SQL Querying

PIVOT's second phase (P2) spreads values of <spreading_col> to their corresponding target
columns. Logically, it uses the following CASE expression for each target column specified in
the IN clause:

CASE WHEN <spreading_col> = <target_col_element> THEN <expression> END

In this situation, the following three expressions are logically applied:

CASE WHEN orderyear = 2006 THEN val END,
CASE WHEN orderyear = 2007 THEN val END,
CASE WHEN orderyear = 2008 THEN val END

Note A CASE expression with no ELSE clause has an implicit ELSE NULL.

For each target column, the CASE expression will return the value (val column) only if the
source row had the corresponding order year; otherwise, the CASE expression will return NULL.

PIVOT's third phase (P3) applies the specified aggregate function on top of each CASE expression,
generating the result columns. In our case, the expressions logically become the following:

SUM(CASE WHEN orderyear = 2006 THEN val END) AS [2006],
SUM(CASE WHEN orderyear = 2007 THEN val END) AS [2007],
SUM(CASE WHEN orderyear = 2008 THEN val END) AS [2008]

In summary, the previous PIVOT query is logically equivalent to the following query:

SELECT empid,
SUM(CASE WHEN orderyear = 2006 THEN val END) AS [2006],
SUM(CASE WHEN orderyear = 2007 THEN val END) AS [2007],
SUM(CASE WHEN orderyear 2008 THEN val END) AS [2008]
FROM (SELECT empid, YEAR(orderdate) AS orderyear, val
FROM Sales.OrderValues) AS OV
GROUP BY empid;

More Info For more details on the PIVOT operator, refer to Chapter 8.

UNPIVOT

UNPIVOT is the inverse of PIVOT, rotating data from columns to rows.

Before | demonstrate UNPIVOT's logical phases, first run the following code, which creates
and populates the dbo.EmpYearValues table and queries it to present its content:

SELECT *
INTO dbo.EmpYearValues
FROM (SELECT empid, YEAR(orderdate) AS orderyear, val
FROM Sales.OrderValues) AS OV
PIVOT(SUM(val) FOR orderyear IN([2006],[2007],[2008])) AS P;

Chapter 1 Logical Query Processing 25

UPDATE dbo.EmpYearValues
SET [2006] = NULL
WHERE empid IN(1, 2);
SELECT * FROM dbo.EmpYearValues;

This code returns the following output:

empid 2006 2007 2008

3 18223.96 108026.17 76562.75
6 16642.61 43126.38 14144.16
9 9894.52 26310.39 41103.17
7 15232.16 60471.19 48864.89
1 NULL 93148.11 63195.02
4 49945.12 128809.81 54135.94
2 NULL 70444.14 74336.56
5 18383.92 30716.48 19691.90
8 22240.12 56032.63 48589.54

I'll use the following query as an example to describe the logical processing phases involved
with the UNPIVOT operator:

SELECT empid, orderyear, val
FROM dbo.EmpYearValues
UNPIVOT(val FOR orderyear IN([2006],[2007],[2008])) AS U;
This query unpivots (or splits) the employee yearly values from each source row to a separate
row per order year, generating the following output:

empid orderyear val

3 2006 18223.96
3 2007 108026.17
3 2008 76562.75
6 2006 16642.61
6 2007 43126.38
6 2008 14144 .16
9 2006 9894.52
9 2007 26310.39
9 2008 41103.17
7 2006 15232.16
7 2007 60471.19
7 2008 48864.89
1 2007 93148.11
1 2008 63195.02
4 2006 49945.12
4 2007 128809.81
4 2008 54135.94
2 2007 70444 .14
2 2008 74336.56
5 2006 18383.92
5 2007 30716.48
5 2008 19691.90
8 2006 22240.12
8 2007 56032.63
8 2008 48589.54

Inside Microsoft SQL Server 2008: T-SQL Querying

The following three logical processing phases are involved in an UNPIVOT operation:

1. UL: Generating Copies
2. U2: Extracting Elements
3. U3: Removing Rows with NULLs

The first step (U1) generates copies of the rows from the left table expression provided to
UNPIVOT as an input (EmpYearValues, in our case). This step generates a copy for each column
that is unpivoted (appears in the IN clause of the UNPIVOT operator). Because there are three
column names in the IN clause, three copies are produced from each source row. The resulting
virtual table will contain a new column holding the source column names as character strings.
The name of this column will be the one specified right before the IN clause (orderyear, in our
case). The virtual table returned from the first step in our example is shown in Table 1-10.

TABLE 1-10 Virtual Table Returned from UNPIVOT's First Step

empid 2006 2007 2008 orderyear
3 18223.96 108026.17 76562.75 2006
3 18223.96 108026.17 76562.75 2007
3 18223.96 108026.17 76562. 75 2008
6 16642.61 43126.38 14144.16 2006
6 16642.61 43126.38 14144.16 2007
6 16642.61 43126.38 14144.16 2008
9 9894.52 26310.39 41103.17 2006
9 9894.52 26310.39 41103.17 2007
9 9894.52 26310.39 41103.17 2008
7 15232.16 60471.19 48864.89 2006
7 15232.16 60471.19 48864.89 2007
7 15232.16 60471.19 48864.89 2008
1 NULL 93148.11 63195.02 2006
1 NULL 93148.11 63195.02 2007
1 NULL 93148.11 63195.02 2008
4 4994512 128809.81 54135.94 2006
4 4994512 128809.81 54135.94 2007
4 4994512 128809.81 54135.94 2008
2 NULL 7044414 74336.56 2006
2 NULL 7044414 74336.56 2007
2 NULL 7044414 74336.56 2008
5 18383.92 30716.48 19691.90 2006
5 18383.92 30716.48 19691.90 2007
5 18383.92 30716.48 19691.90 2008

Chapter 1 Logical Query Processing 27

TABLE 1-10 Virtual Table Returned from UNPIVOT's First Step

empid 2006 2007 2008 orderyear
8 22240.12 56032.63 48589.54 2006
8 22240.12 56032.63 48589.54 2007
8 22240.12 56032.63 48589.54 2008

The second step (U2) extracts the value from the source column corresponding to the unpivoted
element that the current copy of the row represents. The name of the target column that will
hold the values is specified right before the FOR clause (val in our case). The target column will
contain the value from the source column corresponding to the current row's order year from
the virtual table. The virtual table returned from this step in our example is shown in Table 1-11.

TABLE 1-11 Virtual Table Returned from UNPIVOT’s Second Step

empid val orderyear
3 18223.96 2006
3 108026.17 2007
3 76562.75 2008
6 16642.61 2006
6 43126.38 2007
6 14144.16 2008
9 9894.52 2006
9 26310.39 2007
9 41103.17 2008
7 15232.16 2006
7 60471.19 2007
7 48864.89 2008
1 NULL 2006
1 93148.11 2007
1 63195.02 2008
4 49945.12 2006
4 128809.81 2007
4 54135.94 2008
2 NULL 2006
2 70444.14 2007
2 74336.56 2008
5 18383.92 2006
5 30716.48 2007
5 19691.90 2008
8 22240.12 2006
8 56032.63 2007
8 48589.54 2008

28 Inside Microsoft SQL Server 2008: T-SQL Querying

UNPIVOT's third and final step (U3) is to remove rows with NULLs in the result value column
(val, in our case). The virtual table returned from this step in our example is shown in
Table 1-12.

TABLE 1-12 Virtual Table Returned from UNPIVOT's Third Step

empid val orderyear
3 18223.96 2006
3 108026.17 2007
3 76562.75 2008
6 16642.61 2006
6 43126.38 2007
6 14144.16 2008
9 9894.52 2006
9 26310.39 2007
9 41103.17 2008
7 15232.16 2006
7 60471.19 2007
7 48864.89 2008
1 93148.11 2007
1 63195.02 2008
4 49945.12 2006
4 128809.81 2007
4 5413594 2008
2 70444.14 2007
2 74336.56 2008
5 18383.92 2006
5 30716.48 2007
5 19691.90 2008
8 22240.12 2006
8 56032.63 2007
8 48589.54 2008

When you're done experimenting with the UNPIVOT operator, drop the EmpYearValues
table:

DROP TABLE dbo.EmpYearValues;

@ More Info For more details on the UNPIVOT operator, refer to Chapter 8.

Chapter 1 Logical Query Processing 29

OVER Clause

The OVER clause allows you to request window-based calculations. You can use this clause

with aggregate functions (both built-in and custom common language runtime [CLR]-based
aggregates), and it is a required element for the four analytical ranking functions (ROW_NUMBER,
RANK, DENSE_RANK, and NTILE). The OVER clause defines the window of rows over which the
aggregate or ranking function is calculated.

| won't discuss applications of windows-based calculations here, nor will | go into detail about
exactly how these functions work; I'll only explain the phases in which the OVER clause is
applicable. I'll cover the OVER clause in more detail in Chapters 6 and 8.

The OVER clause is applicable only in one of two phases: the SELECT phase (5) and the ORDER
BY phase (6). This clause has access to whichever virtual table is provided to that phase as input.
Listing 1-3 highlights the logical processing phases in which the OVER clause can be used.

LISTING 1-3 OVER clause in logical query processing

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-1) <left_table> <join_type> JOIN <right_table> ON <on_predicate>
| (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>
| (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>
| (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;

You specify the OVER clause following the function to which it applies in either the select_list
or the order_by list.

Even though | didn't really explain in detail how the OVER clause works, I'd like to demonstrate
its use in both phases where it's applicable. In the following example, an OVER clause is used
with the COUNT aggregate function in the SELECT list:

USE InsideTSQL2008;

SELECT orderid, custid,

COUNT(*) OVER(PARTITION BY custid) AS numorders
FROM Sales.Orders
WHERE shipcountry = N'Spain’';

This query produces the following output:

orderid custid numorders
10326 8 3
10801 8 3

30

Inside Microsoft SQL Server 2008: T-SQL Querying

10928 29 5
10568 29 5
10887 29 5
10366 29 5
10426 29 5
10550 30 10
10303 30 10
10888 30 10
10911 30 10
10629 30 10
10872 30 10
10874 30 10
10948 30 10
11009 30 10
11037 30 10
11013 69 5
10917 69 5
10306 69 5
10281 69 5
10282 69 5

The PARTITION BY clause defines the window for the calculation. The COUNT(*) function
counts the number of rows in the virtual table provided to the SELECT phase as input, where
the custid value is equal to the one in the current row. Remember that the virtual table
provided to the SELECT phase as input has already undergone WHERE filtering—that is, only
customers from Spain have been filtered.

You can also use the OVER clause in the ORDER BY list. For example, the following query sorts
the rows according to the total number of output rows for the customer (in descending order):

SELECT orderid, custid,
COUNT(*) OVER(PARTITION BY custid) AS numorders
FROM Sales.Orders
WHERE shipcountry = N'Spain'
ORDER BY COUNT(*) OVER(PARTITION BY custid) DESC;

This query generates the following output:

orderid custid numorders
10550 30 10
10303 30 10
10888 30 10
10911 30 10
10629 30 10
10872 30 10
10874 30 10
10948 30 10
11009 30 10
11037 30 10
11013 69 5
10917 69 5
10306 69 5

Chapter 1 Logical Query Processing 31

10281 69 5
10282 69 5
10928 29 5
10568 29 5
10887 29 5
10366 29 5
10426 29 5
10326 8 3
10801 8 3
10970 8 3

More Info For details on using the OVER clause with aggregate functions, please refer to
Chapter 8. For details on using the OVER clause with analytical ranking functions, please refer to
Chapter 6.

Set Operators

SQL Server 2008 supports four set operators: UNION ALL, UNION, EXCEPT, and INTERSECT.
These SQL operators correspond to operators defined in mathematical set theory.

Listing 1-4 contains a general form of a query applying a set operator, along with numbers
assigned according to the order in which the different elements of the code are logically
processed.

LISTING 1-4 General form of a query applying a set operator

(1) queryl

(2) <set_operator>

(1) query?2

(3) [ORDER BY <order_by_Tlist>]

Set operators compare complete rows between the two inputs. UNION ALL returns one result
set with all rows from both inputs. UNION returns one result set with the distinct rows from
both inputs (no duplicates). EXCEPT returns distinct rows that appear in the first input but

not in the second. INTERSECT returns the distinct rows that appear in both inputs. | could say
much more about these set operators, but here I'd just like to focus on the logical processing
steps involved in a set operation.

An ORDER BY clause is not allowed in the individual queries because the queries are supposed
to return sets (unordered). You are allowed to specify an ORDER BY clause at the end of the
query, and it will apply to the result of the set operation.

In terms of logical processing, each input query is first processed separately with all its relevant
phases. The set operator is then applied, and if an ORDER BY clause is specified, it is applied to
the result set.

32

B

Inside Microsoft SQL Server 2008: T-SQL Querying
Take the following query as an example:
USE InsideTSQL2008;

SELECT region, city

FROM Sales.Customers

WHERE country = N'USA'

INTERSECT

SELECT region, city

FROM HR.Employees

WHERE country = N'USA'

ORDER BY region, city;

This query generates the following output:

country region city
USA WA KirkTland
USA WA Seattle

First, each input query is processed separately following all the relevant logical processing
phases. The first query returns locations (region, city) of customers from the United States.
The second query returns locations of employees from the United States. The set operator
INTERSECT returns distinct rows that appear in both inputs—in our case, locations that are
both customer locations and employee locations. Finally, the ORDER BY clause sorts the rows
by region and city.

As another example for logical processing phases of a set operation, the following query
returns customers that have made no orders:

SELECT custid FROM Sales.Customers
EXCEPT
SELECT custid FROM Sales.Orders;

The first query returns the set of customer IDs from Customers, and the second query returns
the set of customer IDs from Orders. The set operation returns the set of rows from the first
set that do not appear in the second set. Remember that a set has no duplicates; the EXCEPT
set operator returns distinct occurrences of rows from the first set that do not appear in the
second set.

The result set's column names are determined by the set operator’s first input. Columns in
corresponding positions must match in their data types or be implicitly convertible. Finally,
an interesting aspect of set operations is that they treat NULLs as equal.

More Info You can find a more detailed discussion about set operators in Chapter 7.

Chapter 1 Logical Query Processing 33

Conclusion

Understanding logical query processing phases and the unique aspects of SQL is important
to get into the special mind set required to program in SQL. By being familiar with those
aspects of the language, you can produce efficient solutions and explain your choices.
Remember, the idea is to master the basics.

Chapter 2
Set Theory and Predicate Logic

Steve Kass

This chapter contains a brief introduction to two cornerstones of mathematics: set theory
and predicate logic, which are intimately connected to the world of databases. Database
tables represent sets of facts, and database queries produce result sets based on query
predicates.

The objects of study in logic are propositions—statements of fact that are either true or
false—and propositional functions, which are open statements with one or more unspecified
values. Database tables hold representations of statements of fact, and query predicates are
propositional functions.

Later in this book, you'll use logical set-based thinking to write a T-SQL SELECT query to
return the following result set: “all customers for whom every employee from the USA has
handled at least one order.”

Your query won't tell the Microsoft SQL Server engine how to produce the desired result;
instead, it will simply describe the result, in sharp contrast to how you'd use a procedural

programming language, such as C# or Fortran, to produce the same result. The more you
understand about set theory and logic, the easier SQL will be for you.

An Example of English-to-Mathematics Translation

I'll begin this chapter by describing “all customers for whom every employee from the USA
has handled at least one order” not in SQL, as you will see in Chapter 6, “Subqueries, Table
Expressions, and Ranking Functions,” but in the mathematical language of set theory. Turning
English into mathematics, by the way, is much harder than doing mathematics or speaking
English, and this example will highlight some of the mathematical ideas that are particularly
useful to SQL programmers. Some of the set theory notation in this section will be defined
later. Don’t worry if it's unfamiliar.

First of all, let’s give the result set we're after a name.

Definition of the set S (in English)

Let S be the set of all customers for whom every employee from the USA has handled
at least one order.

35

36

Inside Microsoft SQL Server 2008: T-SQL Querying

By naming this set of customers (even by referring to it as a set, so that we can talk about
having named it!), we've made an implicit assumption that the description has a clear
meaning—it describes something unambiguously.

The definition mentions customers, employees, and orders, and to talk about these categories
of things mathematically, we should think of them as sets and name them: Let Customers,
Employees, and Orders be the sets of customers, employees, and orders, respectively.

To describe S mathematically, we don't have to understand what these terms mean; we only
have to name them.

One meaningful term in the description doesn’t represent a kind of thing: handled. Again, we
don't need to know what it means from a business point of view for an employee to handle
an order for a customer, but we do need to understand that, given appropriate details, has
handled is either true or false. We also have to be clear what details it's true or false about.

If we dissect how handled is used in the description, we see that it has to do with three
details: an employee, an order, and a customer.

It's especially useful to be able to write down the handled fact in a particular case. Given a
particular employee e, a particular order o, and a particular customer ¢, this fact (employee
e handled order o for customer c) is either true or false. In other words, it's a predicate. Using
function notation, write handled(e,o,c) to represent the truth value of "employee e handled
order o for customer c¢.” Depending on the values of e, o, and ¢, handled(e,o,c) has a truth
value: it's true or it's false.

Note You might have interpreted handled as involving only two details: an employee and an
order, ending up with handled(e,o) for “employee e handled order 0.” That's not wrong, and in
fact it might be the best way to begin if we were designing a database to support queries to
return S. To define S mathematically, however, the three-detail notion is closer to what defines
S as a set of customers: whether a particular customer c is in the set S. It's harder to express S
mathematically with the two-detail interpretation.

The last element in the description we need notation for is from the USA. Being from the
USA or not is a property of employees, and we’'ll write fromUSA(e) to represent the truth
value of “employee e is from the USA.” To make things a bit simpler to write down at first, let
USAEmployees be the set of employees from the USA or, mathematically, let USAEmployees
= fee Employees : fromUSA(e)}.

Now that we've named everything we might need, we turn to the question of describing
membership in S in terms of the objects we've defined.

Question In terms of the sets Customers, USAEmployees, and Orders and the function
handled(e,o,c), when is a particular customer c in S?

Answer The customer cis in S if and only if for every (employee) e in the set USAEmployees,
there is at least one (order) o in the set Orders for which handled(e,o,c).

Chapter 2 Set Theory and Predicate Logic 37

Using mathematical notation only, here's what we get:

Definition of the Set S (in Mathematics)
Let USAEmployees = fe € Employees : fromUSA(e)}. Then define the set

S = {ceCustomers : Ve cUSAEmployees (Jo EOrders : (handled(e,o,c))}

At the end of this chapter, we'll revisit this set.

Well-Definedness

In nonmathematical language, we describe something as well-defined if it has a distinct
boundary or outline. In mathematics, well-defined has a different meaning. Mathematicians
call something well-defined if it's defined unambiguously. Read the following terms and
descriptions and decide which terms are defined unambiguously.

Provinces The set of Canadian provinces

Numerator The numerator of the number 0.2 written as a fraction

Low Temp The lowest temperature ever recorded in Russia

Big Number The largest number that can be described with fewer than 20 words

Contact List The name and a phone number for each of this book’s authors, alphabetized
by author's last name

Shortest Book The book in the Library of Congress that has the fewest pages
Square x?
Letter The letter B

Let's see if we agree on which of these are well-defined.

Provinces This is a well-defined set: One way of denoting this set is {Alberta, British
Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia,
Ontario, Prince Edward Island, Quebec, Saskatchewan}.

Numerator This number isn't well-defined because we have many ways to write 0.2 as a
fraction, and they don't all have the same numerator.

Low Temp This is well-defined, even though we might not know the value.

Big Number Although this may appear to be a valid definition, it's not. Consider the number
“N plus one, where N is the largest number that can be described with fewer than
20 words.” This is a variation on the Berry Paradox.

38

Inside Microsoft SQL Server 2008: T-SQL Querying

Contact List This isn't well-defined if any of the authors has more than one phone number
because it doesn't specify how we choose phone numbers for the list.

Shortest Book Although the minimum number of pages is well-defined (assuming a
standard procedure for counting pages), more than one book might have the minimum
number of pages. As a result, we can't be sure there is a single shortest book.

Square We don't know the value of x, so x2 isn't a well-defined number. On the other hand,
it is a well-defined algebraic expression.

Letter This defines a particular letter of the English alphabet but not a specific example of
that letter in, say, a copy of this book.

These simple examples offer a number of lessons, but I'll mention just one in particular:
English can easily mislead. For example, two words that indicate uniqueness—the definite
article the and the superlative shortest—were used to describe something that wasn't in fact
unique.

Later in this chapter, I'll be more specific about the notion of well-definedness as it applies
to sets.

Definitions

The elements of mathematical language, like English words, have meanings—at least most
of them do. The definition of an English word is typically a written record of a preexisting
meaning. In mathematics, however, an object’s definition typically establishes its meaning.
Definitions in mathematics come in several forms; here are a few examples of definitions.
These particular definitions aren’t needed elsewhere in the chapter; they're only here for
illustration.

Sample Definitions

For any real number x, let | x] be the unique integer in the half-open interval [x,x+1].
The function x—/x/ is called the greatest integer function.

Let T be the set of continuous bijective involutions on the unit interval.
Let S = {(h,n+1) : nis a positive integer}
An integer n is prime if n > 1 and n has no integer divisors d between 2 and n - 1.

The Fibonacci sequence is the sequence of integers F; defined recursively as follows:
Fi=F,=L1F =F, +F,,forn>2.

Chapter 2 Set Theory and Predicate Logic 39

Undefined Terms

Any mathematical framework—set theory, logic, geometry, and so on—begins with some
undefined terms and unproven axioms—usually these are simple objects or accepted notions,
such as point or set, or that two numbers equal to the same number are themselves equal.

Equality, Identity, and Sameness

One of the most frequently used symbols in mathematics is the equal sign (=). Informally, it's
the symbol for is, as in one plus one is two. The equal sign is used in mathematics in many
ways to represent some notion of equality, sameness, or nondistinctness. Roughly speaking
(which is all we can do without a major detour into deep questions of philosophy), it's safe to
substitute one mathematical quantity for another one if the two are equal.

Don't assume, however, that x=y means that x and y are identical in every possible way. Although
no one would dispute that alligator=alligator, we can still distinguish the two. A molecule of
pigment in one of them is certainly not also in the other, and | can point to one of them, let's
say the one on the left, and describe it as this alligator, and you know that the other one is a
different alligator. If you have the slightest inkling that someone might be using the equal sign
imprecisely, a good question to ask is “equal as what?" The two alligators in alligator=alligator
are equal as animal names or equal as words and probably equal as character strings (though
not if one of them ends up hyphenated when this book is printed). The two alligators are
decidedly not, on the other hand, equal as arrangements of pigment molecules.

While it might seem unnecessary to spend even this short amount of time splitting hairs, as it
were, we'll see some practical implications later.

Mathematical Conventions

Every now and then in my beginning programming classes, a student—usually a good one—
will name variables with an extra dose of creativity, and I'll be confronted with something
| call the penguin dialect of programming, as shown in Listing 2-1.

LISTING 2-1 Bubble sort, written in the penguin dialect

for(int penguin = 0; penguin < tiger-1; ++penguin) {
for(int Betty = 0; Betty < tiger-penguin-1; ++Betty) {
if (abba[Betty+1] < abba[Betty]) {
int Whoops = abba[Betty];
abba[Betty] = abba[Betty+1];
abba[Betty+1] = Whoops;
}
}
}

40

Inside Microsoft SQL Server 2008: T-SQL Querying

In contrast, a textbook author might express the same algorithm this way, in what I call the jjk
dialect, as shown in Listing 2-2.

LISTING 2-2 Bubble sort, written in the jjk dialect

for(int i = 0; i < n-1; ++i) {
for(int j = 0; j < n-i-1; ++j) {
if (a[j+1] < a[jD) {

int t = aljl;
a[jl = a[j+1];
alj+1] = t;
}
}
}

Yet another category of programmer might create this version of the algorithm. Making no
attempt to hide my own personal bias, | call this the usefulNames dialect, as shown in Listing 2-3.

LISTING 2-3 Bubble sort, written in the usefulNames dialect

for(int passNo = 0; passNo < arrSize-1; ++passNo) {
for(int position = 0; position < arrSize-passNo-1; ++position) {
if (arr[position+l] < arr[position]) {
int temp = arr[position];
arr[position] = arr[position+1];
arr[position+l] = temp;
}
1
}

The creative student chose names such as penguin and Betty in part because she wasn't

yet familiar with the naming conventions of programming and in part because experience
hadn't yet taught her the importance of conventions. The author of the second version
chose the names i and j because she was accustomed to an accepted system of naming
conventions: the jjk dialect. The third author, | would venture, understands the importance of
naming conventions and knows from experience how those conventions affect the ability to
understand and develop correct code.

The ijk dialect rose to prominence in mathematics for good reasons. Formulas are easier

to fit on a page (not to mention the back of an envelope or a napkin) if notation is concise.
Conciseness was important, too, in the early days of computing, when statements had to fit
on 80-column punch cards.

| won't abandon the venerable conventions of mathematics, but I'll try to be aware of
the barrier to understanding they can create. Where appropriate, I'll point out some of
the specific conventions, which may be useful if you decide to delve more deeply into the
subjects of this chapter.

Chapter 2 Set Theory and Predicate Logic 41
Numbers

There are many kinds of numbers in theoretical mathematics, but in most practical settings,
numbers mean real numbers, from the familiar number line, which, like the x-axis of coordinate
geometry, extends forever in both directions from zero. Numbers to the left of zero are negative;
numbers to the right are positive.

The real number system is fundamentally intuitive because it corresponds to familiar concepts
from geometry: length, line, point, ray. In fact, the real numbers are important because they
are the numbers with which we express things that we can measure. They also provide the basis
for nearly all kinds of calculation or computation, through the operations of arithmetic.

Real numbers and arithmetic “play well together,” you might say. If we add some numbers

in one order—for example, we add 3.4 and 18—and then we add 30.1 to the result, we get
the same answer as if we started by adding 18 and 30.1. The nice properties real numbers
have with respect to arithmetic are taught in school: the associative law, the distributive laws,
the commutative law, and so on.

Other important properties of the real numbers are a little less familiar but include these:
Given two positive real numbers x and y, with x the smaller, there's a whole number n for
which y lies between nx and (n+1)x. For any two real numbers x and y, again with x the smaller,
there is another real number (in fact infinitely many) strictly between x and y.

Like most programming languages, T-SQL provides a data type intended to represent real
numbers. In fact, it provides two: REAL and FLOAT. However, neither these types nor SQL
Server’s other number types (some of which are termed exact types) are faithful representations
of the real number system from mathematics.

Hold onto that thought. We'll come back to it.

Context

The correct interpretation of language depends on context. In some cases, the context for
interpreting a word is adjacent, as is the context for interpreting the word “floor” differently
in the following two sentences: “This will floor you” and “The floor is dirty.” In other cases,
the context is more general, as in the context for interpreting the remark “Watch the batter!”
differently when at an baseball game and when in a cooking class. Every natural language
depends on context to clarify meaning, and it's a fact of life we tend to accommodate
naturally, for the most part.

Mathematical expressions depend on context also, but we don't grow to learn the details and
implications of mathematical context as naturally as we do for our native tongue. Table 2-1
presents a few examples from arithmetic and algebra where the same expression can have
more than one interpretation, depending on the context.

42 Inside Microsoft SQL Server 2008: T-SQL Querying

TABLE 2-1 Expressions and Possible Meanings in Different Contexts

Expression Possible Meaning A Context for This Meaning
c(a+b) The application of the function c to the The symbol ¢ has been defined as
argument a+b a function.
c(a+b) The product of the numbers c and a+b The symbol ¢ has been defined as
a number.
b=A1 The reciprocal of A: b = 1/A The symbol A represents a number.
b=A1 The inverse function of A:if A(x) = y, b The symbol A represents a function.
satisfies the equation b(y) = x
iy The product of i and y The symbol i was defined as an integer.
iy An imaginary number The surrounding discussion is about

complex numbers.

It's possible to define a system of notation far less dependent on context than the familiar
language of mathematics. Such a system would be cumbersome to learn and use, however,
because reusing symbols to mean different things in different contexts provides economy
and convenience.

Dates

The importance of context is not restricted to the interpretation of expressions. The interpretation
of individual literal values can depend on context as well.

The concept of a calendar date is a good example of this. There's no one "right” way to denote
calendar dates, but to communicate, we have to denote them. A character string that represents
a specific value is called a literal. Table 2-2 presents some literal date values and the meanings
they would have in some of SQL Server's supported languages.

TABLE 2-2 Date Literals with Culture-Dependent Meanings

A language where this
Date literal Possible meaning is the meaning

3 listopad 2008 The 3 day of the 11th month of the year 2008 Polish
3 listopad 2008 The 3 day of the 10th month of the year 2008 Croatian

13-12-09 The 12th day of the 13th month of the year 2009 US English
13-12-09 The 13th day of the 12th month of the year 2009 German
13-12-09 The 9th day of the 12t month of the year 2013 Swedish

Depending on the server's two-year date cutoff setting, which provides yet additional context
for the interpretation of dates, the date literal string 13-12-09 could be interpreted with the
year 1909 or 1913, depending on language.

Fortunately, you can specify dates in culture-independent ways, and one that works well
for SQL Server is the string YYYYMMDD. (In code, be sure to surround it with quotes, as in
‘20071112', so that it isn't interpreted as an integer!)

Chapter 2 Set Theory and Predicate Logic 43

Alphabetical Order

Later in this chapter, I'll discuss the notion of order in more detail. At this point, I'll simply
mention that alphabetical order is another notion that depends on context. In a Spanish
dictionary from the early twentieth century, you'll find the word llama after the word lobo
because Spanish traditionally considered the word llama to begin with the letter (yes, letter,
not letters) ll, which comes after the letter /. In an English dictionary, llama begins with /; thus,
llama appears before lobo.

Functions, Parameters, and Variables

I'll assume you're familiar with the language of mathematical functions, such as f(x)=x?, and

I'll address any tricky concepts when they arise. The word parameter is worth a few remarks.
This term may mean a number of things: in the function definition f(x) = x2, x is a placeholder
(or more precisely, a formal parameter or free variable). If we apply the definition of the same
function and write f(9) = 81, the number 9 is also called a parameter (an actual parameter).
Roughly speaking, a parameter is a placeholder for a value, a value that fills such a placeholder,
or a value that might be a different value. In this chapter, the term parameter will mean formal
parameter or placeholder.

Ideally, for every parameter in an expression, a well-defined set of values can be substituted
in its place. This set is called the parameter’'s domain. If the domain of x in the expression
f(x) = x2 is the set of real numbers, we can also call x a real-valued parameter. An expression
with a parameter, such as x2, is called a parameterized expression.

Note Parameter domains often go unstated. They may be implied by conventions mathematicians
follow when they choose symbols and names: the names x, y, s, and t are typically used for
real-valued parameters; z, and sometimes w, are good choices for complex-valued parameters; p, g,
and r are typical rational-valued parameter names; and letters near the middle of the alphabet,
including i, j, k, m, and n, more often than not represent integer-valued parameters.

In programming languages, domains correspond to types, and parameters correspond to
variables. In T-SQL, a variable’s type must be specified.

To set the stage for what comes later, consider the real-valued parameter x in the parameterized,
real-valued expression x2. Despite being named real valued, neither x nor x2 has any value at all,
at least not until x is specified. If we supply a value—for example, 3—for x, the expression x2 then
has a value, which in this case is 9. Supplying the value 3 for the parameter x is informally called
plugging 3 in for x or, formally, binding x to the value 3. We can be sure an expression represents
a specific value when all of its parameters have been bound.

Instructions and Algorithms

The topics of this chapter, set theory and logic, are mathematical frameworks for describing
things and facts, respectively, both of which are most easily considered static. While a computer
program—source code—is static, the execution of a program is dynamic. If the program is

44

Inside Microsoft SQL Server 2008: T-SQL Querying

useful, the execution is almost certainly nondeterministic. In most programming languages, the
code describes the process of execution.

A rigorous mathematical treatment of program code is more straightforward than one of
program execution. At the least, the mathematical tools for describing execution are further
removed from the mathematical foundations of set theory and logic. The beauty of SQL,
though, is that its code can describe results directly, without having to express algorithms and
describe the process of execution. Not surprisingly, the inspiration that led to SQL was set theory.

Set Theory

Itzik Ben-Gan is one of this book's authors. That's a fact, and database systems like SQL
Server 2008 help us identify facts and separate them from fiction. Here are some other facts
about who is and who isn't one of this book’s authors: Dejan Sarka is one; Bill Gates is not.

In the language of sets, we can describe the set of authors of this book, and we can use the
language of set theory to express facts.

If we name the set of authors of this book A, we can write A = {Itzik Ben-Gan, Lubor Kollar,
Dejan Sarka, Steve Kass}. We call A a set, and we call the four authors elements, or members,
of A. The statement that Itzik is one of the book's authors can be expressed as ItzikeA.

Note As we'll soon see, there should always be some universal context for a given set's elements
and its nonelements. For the preceding set A, the context might be people, and we could
describe the set A of people, not just the set A, to be the authors of this book. We won't always
allude to or specify this universal context, but wherever we see or say set, we should be prepared
to answer set of what?

Definition of the Set Membership Operator

The symbol € is the set membership operator. If A is a set and x is a potential member
of A, we write x€A to mean that x is a member of A, and we write x¢A to mean that x
is not a member of A.

Note For given values of x and A three scenarios are possible:

x is an element of A In this scenario, x€A is true, and x€A is false. For example, this scenario
would hold if x were the number -12 and A were the set of even integers.

x is not an element of A x€A is false, and x¢A is true. For example, this scenario would hold if x
were the state of Maine and A were the set of Canadian provinces as of the year 2008.

The expressions x€A and x¢A are (both) not valid propositions For example, this scenario
would hold if x were the state of Maine and A were the set of ingredients in coq au vin.
In this case, A is a set of some food ingredients, and Maine is not a food ingredient. This
scenario would also hold if A were not a set.

Chapter 2 Set Theory and Predicate Logic 45

Set theory is the fundamental underpinning of mathematics, and the fundamental concept
of set theory is the notion of membership.

Notation for Sets

Braces, like | used earlier when | wrote A = {ltzik Ben-Gan, Lubor Kollar, Dejan Sarka, Steve
Kass}, are standard notation in mathematics for sets. Put some things between braces, and
you have a set. You can even put nothing between the braces, like this: {}, and it's a set,
known for obvious reasons as the empty set.

Enumeration

If we list a set’s elements—separated by commas and between braces—we've enumerated
the elements of the set. Enumeration of elements is a simple way to denote a set if the set
doesn't contain many elements. If the set is large but the elements have a pattern, we can
describe the set using an ellipsis (...). If we need to and the intent is clear, we can use more
than one ellipsis and (in a pinch) semicolons to separate sublisted groups of elements in
patterns, as shown in Table 2-3.

TABLE 2-3 Sets Described Using Enumeration

Set (notation) Set (English)

{1,234, ..} The positive integers
{0,-1,1,-2,2,-3,3,-4,4, ..} The integers

{.,-3,-2,-1,0,1,23,..} The integers

{A,B,C,...2Z} The letters of the English alphabet
{A,B,C,...,Z ab,c..z Uppercase and lowercase English letters

{0; 0.0,0.1,0.2,...,0.9;0.01,0.02,...,099; ..} The decimal numbers at least 0 but less than 1

Set-Builder Notation

Set-builder notation also uses braces, but it avoids listing every element explicitly without
resorting to ellipses. Set-builder notation has two common variations. In one, the elements
of a set are described as those elements from another set that satisfy a condition. Here is
how you could write the set E of positive even integers with this kind of set-builder notation:
E = {neZ: n>0 and (n/2)€Z}. In the other variation, set-builder notation describes the
elements of a set as those “built” from the elements of another set by a formula. Here is a
way to do that for the same set E: E = {2n : n€Z*}.

Note In the definition of the set E, / is the division operator of arithmetic, which is the inverse of
multiplication. In particular, 1/2 equals one-half. In T-SQL and many strongly typed programming
languages, 1/2 equals zero because integer division yields the integer result of truncating the
quotient towards zero.

46

Inside Microsoft SQL Server 2008: T-SQL Querying

The symbol Z is standard mathematical notation for the set of integers, as is Z* for the
positive integers.

Well-Definedness of Sets

The word set is usually left undefined, but particular sets, such as the set of this book's
authors, are defined as needed. One way to be sure S is well-defined is to verify the following
two conditions:

B There is a universal set U or domain of discourse for S, whether explicitly stated or
understood from context. The set U contains precisely the elements of S together with
the nonelements of S.

B The definition of S is sufficient to answer the question “Is x an element of S?” for any
element x in U.

Not all authors insist on the first requirement, but it's extremely useful. It's also appropriate to
the context of learning about a typed programming language (T-SQL) and the fundamentals
of databases, where universal sets are important.

Domains of Discourse

Recall the earlier example from this chapter where we represented the statement “employee
e handled order o for customer ¢” as handled(e,o,c). Given a particular employee e, order o,
and customer ¢, the statement, or equivalently the expression handled(e,o,c), has a truth value
of either true or false. These two values, true and false, were the only possible values of the
expression handled(e,o,c).

On the other hand, | used this example without any indication of what possible values the
input variables e, 0, and c could equal. What are the possible ways in which the variable e can
represent “a particular employee,” o can represent “a particular order,” and ¢ can represent

“a particular customer”?

At first, you might think this is a needlessly picky question. As long as o is an order, what's
the problem? But if I'm charged with writing the code to implement the evaluation of
handled(e,o,c), | need to know the possible values of the variable o. Without knowing, | can't
be sure my implementation is valid. The architect whose model required an implementation
of handled() also has to know to be able to validate the model.

Without a well-defined domain for the variable e, representing “all possible employees,” we'll
never be able to validate a model that uses the notion of employee, let alone that tries to
represent notions such as handled. Notions like that of employee are central to the effective
use of databases. Let me give you a concrete example of where you might find domains of
discourse in the business world and why careful attention to them is important: forms.

Chapter 2 Set Theory and Predicate Logic 47

Domains and Bad Data

At some point in your life you've had to fill out a form with details like your name, your date
of birth, your address, and so on—phone number, e-mail, citizenship—the list is endless.
Whether it was a paper form or something you filled out online, your answers had to fit. (Even
if you could “attach additional pages as needed,” your answers had to fit in the envelope or
mailbox!) Furthermore, if the information you provided was destined for a well-designed
database, the information had to fit not only the form but also (after interpretation by a data
entry clerk, a software interface, or another intermediary) the constraints of the database
design.

For this example, suppose that the forms we're thinking about are receipts from individual sales
and that these forms have a place for, among other things, the date of the sale and the tax
paid on the sale. Down the road, these forms are entered into a database, and the data may be
used to generate a report—perhaps a report of tax receipts by month. To produce the report,
the sales data has to be partitioned, or grouped, into months, according to the sale date, and
the tax receipts have to be added up for each month. However the data is represented, we
have to be able to figure out a month and a number from each receipt.

Because you're reading this book, it's probably safe to assume that you've had to think about
this kind of process. You've probably had to get your hands dirty in it. More likely than not,
you've also had the experience of seeing or worrying about information that looks like the
information in Table 2-4.

TABLE 2-4 Sale Dates and Tax Received for Some Sales

Receipt Number Sale Date Tax Collected Customer Name

1 Jul3 $1.24 Mark Hassall

2 Sunday, 10/3 exempt Torstonen

3 Sunday, 10/3 Carole Poland $2.56

6 10/12/2007 N/A CAROLE POLAND
10-13-2007 $3.00 POLAND

11 10-13-2007 $1.24 Yao-Chiang

11 Febuary ‘07 Did not provide

12 February 11 $18.24 katrin

13 Feb 13 3.10 FRNDO

14 2/13/07 41 Jim Wickam (sp?)

#17 14 Feb 2.25 Sittichai

18 Carole Poland 5 blank

Not even the most talented programmer can write procedures to report tax receipts by month
from data like this—well, not procedures that produce correct reports. The requirement is
incompatible with the data, and one or the other has to be bent.

48

Inside Microsoft SQL Server 2008: T-SQL Querying

Let's assume the data is bent into shape, and instead of the unmanageable information in
Table 2-4, the data appears as shown in Table 2-5.

TABLE 2-5 Sale Dates and Tax Received for Some Sales

Receipt Number Sale Date Tax Collected Customer Name
1 7/3/2007 1.24 Mark Hassall

2 10/3/2007 exempt Torsten Arndt

3 10/3/2007 2.56 Yao-Qiang Cheng
6 10/12/2007 0 Carole Poland

7 10/13/2007 3.00 Carole Poland

11 10/13/2007 1.24 Yao-Qiang Cheng
11 2/25/2007 NULL

12 2/15/2007 18.24 Katrin Gulbis

13 2/29/2007 3.10 Nkenge McLin

14 3/13/2007 041 Jim Wickham

17 3/16/2007 2.25 Sittichai Tuntisangaroon
18 3/12/2007 5 blank

If you looked closely, you may have noticed something strange about receipt 13's sale date.
In the row containing 13 in the Receipt Number column, the Sale Date column contains
2/29/2007, which doesn't represent a date. The Sale Date column still contains strings, not
dates. While most of the values this time do represent dates, not all of them do. Whether
we use strings, numbers, or another data type, we need a column that holds faithful,
unambiguous representations of dates.

Note Wish as we might, someone, if not us, has to accommodate the receipt that has an
illegible or missing date. Recognizing the value of a column to hold faithful, unambiguous
representations of dates—when they existed, which might not be always—those responsible for
SQL provided for nullable column declarations. | won't have too much to say about NULL, I'm
afraid. The mathematics becomes much harder—some might say intractable—if you attempt to
accommodate NULLs.

Dates and literal date strings aren’t the same, literal date strings and strings aren’t the same,
and the interpretation of literal date strings isn't invariant from culture to culture, epoch to
epoch, or system to system.

The best we can do is document and define categories (such as dates), identify one or more
faithful representations of them (such as date strings in a particular format), and understand and
record as much as we can about the representations and concepts, their cultural interpretations,
and what universe of potential values serves as the domain of discourse for a category.

The data in Tables 2-4 and 2-5 contain other properties that will make it hard to create a tax report.
| won't say anything about them, but | encourage you to think about why, mathematically, they
cause problems.

Chapter 2 Set Theory and Predicate Logic 49

Domains and Modeling

Now return to this chapter’s first example. As a mathematical object, fromUSA is a function.
It takes one input value (an employee e) and yields (more precisely, associates to that value)

a unique output from the set {true, false} of logical truth values. In mathematics, function
doesn't belong to a well-defined category, nor does the more specific functions of one
variable that return truth values as output. To work with functions mathematically, we need to
be precise about the function's domain.

Because notions such as employee simply fail to admit a well-defined universal set of any
reasonable description, we choose properties or surrogates that work. We may not be able
to describe “all employees,” but we can decide that employees, when we need to refer to
them in questions or assertions of fact, must be identified unambiguously by a specific
group of properties (such as the combination of name, phone number, and birth date) or
by an identifier of some kind. We can then define the universal domain of employees as the
universe of such identifiers.

Once we specify a domain for employees (or values that represent employees), we can be
precise about what kind of mathematical object handled is: a Boolean-valued function of one
variable, with domain the set of employee identifiers.

Whether we choose to represent an object by a surrogate, as we might represent an order by
an order number, or by one or more properties, as we might represent a person by birth date
and some DNA measurements, we expect the surrogate to represent the object faithfully.

Faithfulness

As you know by now, we may think about concepts, but in practice, we must work with
representations of concepts. As best we can, we choose representations of concepts that
don't mislead us or to be more precise, that don’t require us to sacrifice our ability to answer
questions.

Definition of a Faithful Representation

Let X and S be sets, and let F be a collection of functions. (Think of X as your objects
of interest; think of S as the strings, numbers, or other objects you hope to use to
represent elements of X. Think of & as the tools you need to answer questions about
elements of X for some larger purpose.)

In addition, let & : X — S be a function that associates to each x€ X a representation
KR(x) in S. The function R is called a representation of X, and it is faithful for & if there
is a collection of functions & that refer to S instead of X, and to &(x) instead of x, but
that correctly perform every calculation that was possible in F before the substitution
of S for X and R(x) for x.

50

Inside Microsoft SQL Server 2008: T-SQL Querying

Informally, a representation is a naming scheme, and a faithful representation is a naming
scheme that works. A naming scheme for things can work if the names alone allow you to
keep track of what you need to keep track of.

Suppose X is the set of US dollar-denominated bills manufactured by the United States
Bureau of Engraving and Printing (BEP). If you were a shop owner, you might need to answer
just one or two kinds of questions about elements of X: how much is a particular bill worth,
and how many of each denomination are “here” (where “here” might refer to a customer’s
hand or your cash drawer).

Note Another question you might think of is “Is this bill genuine, as opposed to counterfeit?”
That's not a question about elements of X, however, because X is the set of dollar-denominated
bills manufactured by the United States Bureau of Engraving and Printing. That agency doesn't
manufacture counterfeit bills!

A system that represented bills in X as strings such as $1, $10, $2, and so on would serve your
purposes, as long as the strings correctly reflected the bill's face value. This way to represent
the elements of X would be faithful to your needs. This same system of representing the bills
in X might not be faithful to the needs of a bank, however. You can imagine that a bank’s
theft-insurance contract might require it to keep track of the individual large-denomination
bills it handled. Fortunately, the BEP prints identifying numbers on each bill it prints, and
those numbers are unique! within each denomination and series of issue; representing bills
by their series of issue, serial number, and denomination would work for the bank’s purpose
because it fully distinguishes every individual element of X from every other.

A representation can still be faithful even if it doesn't reflect everything directly. We'll see this
in the next example.

Let C be the set of automobiles manufactured in North America since 1980.

One can imagine the need to keep track of many things about cars, but consider just two: the
year of manufacture and the amount of gasoline in the car’s tank at a particular moment in time.
Each can be thought of as a function on the set C: let year_ made(c) be the year in which car c
was made, and let gas_/level(c) be the function of time that gives us the amount of gasoline in the
tank of car c at time t, where t is between the time the car rolled off the assembly line and now.
For actual calculations with numbers, though we'll do none here, we would also indicate the
units of measurement, which might be US gallons for an amount of gasoline and coordinated
universal time (or UTC) for a moment in time.

These two functions, year_made and gas_level, are well-defined functions of a car. For a
particular car ¢, the meaning of year made(c) is well-defined. For a given car c, gas_level(c) is

1 This is true by design and, let's assume, in practice. In theory, however, the BEP presses can malfunction, and bills
could be printed with nonunique, illegible, or multiple serial numbers.

Chapter 2 Set Theory and Predicate Logic 51

also well-defined. It may be impossible in 2009 to discover the exact value of “the amount of
gasoline in this car at midnight on April 9, 2004,” but that phrase unambiguously describes a
value nonetheless.

Many representations for the set C are faithful for the functions year_ made and gas_level.

The VIN, or vehicle identification number, which by law (most) vehicles must have, is one.
Another is the car’s owner and license plate number. While neither would make gas_level easy
to calculate, the point is that they would not make it impossible. On the other hand, we couldn’t
use a representation that failed to distinguish every car from every other, as we could for bills.

Note that the representation (owner, license plate number) doesn't reflect the identity of
each car directly, in the sense that we can't discover the representation details by studying a
car. This indirectness of representation doesn't translate to unfaithfulness, however.

No REAL Faithfulness

Earlier in this chapter, | asked you to hold onto a thought, and we'll return to it now. | said
earlier that the data types SQL Server provides for numbers don't faithfully represent the real
number system of mathematics. We can now be precise. Here's a simple demonstration in
code that the REAL type doesn't represent real number faithfully:

DECLARE @a REAL = 0.001;
DECLARE @b REAL = 9876543;
DECLARE @c REAL = 1234567;

SELECT
@ * (@ * @c) as [a(bod)],
(@a * @) * @c as [(ab)c]

This code produces the following result:

1.219325E+10 1.219326E+10

Notice that the two result values, which are the results of multiplying the same three
numbers in different orders, are slightly different. In other words, while in the “real” real
numbers and arithmetic, a(bc) = (ab)c, it's not true for SQL Server’s representation of the
real numbers and arithmetic. This is no slight against SQL Server, and the result conforms to
the important IEEE standard for floating-point arithmetic. But computer representations of
numbers aren't faithful to arithmetic, and while they suit most needs, they don’t answer all
questions with the “correct” mathematical answers.

To the extent that degrees of faithfulness exist, SQL Server represents mathematical sets and
their operations with a considerable degree of faithfulness, more than it (or most any other
programming language) does for numbers and arithmetic.

52

Inside Microsoft SQL Server 2008: T-SQL Querying

Russell's Paradox

In about 1901, Bertrand Russell discovered that the informal notion of set in mathematics
was logically flawed. The informal notion of set takes as axioms (fundamental propositions)
that any collection of things is a set and that any criterion can serve to define membership
in a set. Russell showed that these axioms were inconsistent because they lead to a
contradiction.

Note Russell's discovery doesn’'t mean the axioms of set theory are false, only that they are
incapable of serving to found a consistent mathematical theory.

Russell reasoned as follows: Let U be the set of all sets. Since U is a set and at the same

time every set is an element of U, then U&U. Recognizing that the property UeU was
curious, Russell considered the collection of all curious sets—sets that contain themselves as
elements. Call this set of all curious sets C; we can express C as {x€U : x&x}. Similarly, consider
everything else (the set of noncurious sets) NC. Every set is either curious (in which case x&Xx),
or it's not curious (in which case x&x). Thus, NC = {x € U : x & xj}.

No contradiction so far—sets are either curious or they aren't. But Russell wondered which
kind of set NC was. Is NC a curious set, or is it a noncurious set? Because there are only two
possibilities, we can explore each one.

Let's explore the possibility first that NC is a curious set. If so, it belongs to the set of all
curious sets, which we've called C. In other words, NC&C. But at the same time, if NC is a
curious set, it contains itself as an element (that’s what curious means), so NCENC. This can't
be; NC can't be an element of both C and NC because no set can be both curious and not
curious. This possibility led to a contradiction.

Now let’s explore the possibility that NC is not a curious set. It's the only possibility left,
by the way. Reasoning much as before, if NC is not a curious set, it doesn't contain itself
(otherwise, it would be curious). Therefore, NC&NC. But if NC is not an element of NC, it's
not noncurious, which makes it curious. This possibility also led to a contradiction.

Russell’s argument has become known as Russell’s Paradox. By itself, it's not really a paradox
at all; it's a valid demonstration that the informal approach to sets (nowadays called naive
set theory) is inconsistent. What does remains something of a paradox is whether a correct
theoretical foundation for mathematics exists.

For us, Russell’'s Paradox underlines the importance of working within a well-defined
universal set.

Chapter 2 Set Theory and Predicate Logic 53

Ordered Pairs, Tuples, and Cartesian Products

An important concept in mathematics—and one that is central to database programming—is
that of an ordered pair (g,b). To include ordered pairs in a rigorous treatment of mathematics,
there must be a universal set of ordered pairs. This is the Cartesian product.

Ordered Pairs and k-Tuples

We will consider ordered pair to be a new undefined term, like set. Recall that a particular set
is defined by its members and nonmembers; a particular ordered pair is defined by its first
part and its second part. We also accept without definition the term tuple, or k-tuple, for an
object that, like an ordered pair, has parts but where there are k parts. An ordered pair is a
tuple—in particular, a 2-tuple; (x,y,zw) is also a tuple—and, in particular, a 4-tuple.

Notation and Definitions for Ordered Pairs and Tuples

If s and t are elements of some domains, (s,t) is called the ordered pair with first part
(or coordinate) s and second part (or coordinate) t. Two ordered pairs (s,t) and (x,y) with
matching domains are equal if their corresponding parts are equal: s=x and t=y.

Ifs, ¢t ... rare (k-many) elements of some domains, (s,t,...,r) is called an ordered k-tuple.
Reference to the parts of (s,t,...,r) and equality for k-tuples follow the analogues for
ordered pairs.

Subscript notation is used for the parts of ordered pairs and tuples, when the tuple
itself is represented by a single symbol. It's especially convenient when all the parts
have a common domain. If r is a k-tuple of real numbers and j is an integer between
1and k, r; is a real number and denotes the jth part of .

The most familiar example of ordered pairs in mathematics, and perhaps the original one, is
the usual notation for points in the coordinate plane: (x,y), where x and y are real numbers.
The seventeenth-century mathematician René Descartes used this notation, which is now
called the Cartesian coordinate system in his honor.

Naming the points in the plane (x,y) works. In the sense we described earlier, this notation
faithfully represents the essence of points. Thus, nothing is lost by saying “the point (x)"
instead of “the point represented by (x,y)."

The set of all points in the plane is P = {(xy) : x€R and yeR}. A more compact way to write
the set P is RXR, which mathematicians understand to mean the same thing and which is
called the Cartesian product of R and R.

54

Inside Microsoft SQL Server 2008: T-SQL Querying

The Cartesian Product

A Cartesian product is the domain of discourse for ordered pairs or tuples. Here's the general
definition.

Definition of Cartesian Product

Let S and T be sets. The Cartesian product of S and T, denoted SxT, is the set {(s,t) : s€S
and teT} If no confusion arises, the terms S-coordinate and T-coordinate can be used in
place of first coordinate and second coordinate, respectively, for the parts of elements
of SXT. The sets S and T are called factors (and if needed, the first and second factors,
respectively) of SXT.

Cartesian products with more than two factors are defined analogously as sets of tuples,
with no distinction made between, for example, (AxB) xC, which contains elements of
the form ((a,b),c), and AXBXxC, which contains elements of the form (a,b,¢).

Note In the definitions for ordered pairs, equality of ordered pairs was defined as coordinate-wise
equality on the coordinate parts. Any operation defined on a Cartesian product'’s factors can
similarly be "lifted,” or imparted to the elements of SXT. When this is done, the operation is said

to be a coordinate-wise operation. In the Cartesian plane, for example, a “coordinate-wise +"
operation combines the points (x,y) and (s,f) to obtain (x+s,y+t). With the exception of the

= operator, don't assume a familiar symbol represents a coordinate-wise operation on ordered
pairs (or tuples). For example, although |s| means the absolute value of the number s, |(s,t)| does
not represent (|s],|¢|).

The Cartesian product is not commutative: AxB and B XA are not the same when A and B are
different.

The Empty Set(s)

The empty set contains no elements, but what is its universe? If imagining a set of all sets
gets us into trouble, a set of all possible elements can only be worse because sets can

be elements of sets. As we've seen before, using the word the doesn't make something
unique. The empty set of integers is the set whose elements are (there are none) and whose
nonelements comprise all integers. On the other hand, the empty set of English words is the
set whose elements are (there are none) and whose nonelements comprise all English words.

How many empty sets are there? Perhaps my insistence that sets have well-defined domains
has backfired and buried us in empty sets! Fortunately, we can declare the question invalid.
Our framework only defines equality of things and questions such as “how many?” within
some universal set U, and no universal set contains “all the empty sets.” We do want to know
how to interpret any sentence containing the phrase “the empty set,” and that we can know.

Chapter 2 Set Theory and Predicate Logic 55

Definition of the Symbol &

The symbol @ represents the empty set. When the domain of discourse is the universe
U, @ represents the subset of U for which xe is false for every x in U.

Note One attempt to resolve Russell's Paradox is to create a tower of universal sets, where the
depth of set-within-set-within-set-within-set. .. nesting is controlled. The nth universal set can
only contain elements from the previous universal set, and this prevents any universal set from
containing itself.

The Characteristic Function of a Set

Set theory, functions, and logic are intimately connected, and one connection among them is
the notion of the characteristic function of a set.

Definition of the Characteristic Function of a Set

If S is a set with universe U, the characteristic function of S, denoted 1, is the function
of U, whose value is 1 for elements in S and 0 for elements not in S.2 As a consequence,
the statements x € S and 1,(x) = 1 are logically equivalent and interchangeable.
Similarly, the statement x & S is logically equivalent to the statement 1((x) = 0.

The characteristic function of a set S completely characterizes S. Its domain is the universe U,
and the elements of S are precisely the elements x of U for which 1¢(x)= 1. As a result, we
can define a set by specifying its characteristic function, and this turns out to be particularly
useful in some cases.

We now have several ways to describe a set: by description, by enumeration or set-builder
notation, by condition, and by characteristic function. For a moment, assume that the
domain of discourse is the integers. Here are four definitions of the same subset of the
integers.

Description S is the set of positive even integers.

Enumeration and Set Builder S =1{2, 4,6, 8,10, ..}, orS = {2k : keZ*}

Condition S = {n:n>0and nis an integer multiple of 2}

Characteristic Function S is the set whose characteristic function is f(n), where f(n) is defined
for integers n as follows: If n is negative, odd, or zero, f(n) = 0; otherwise, f(n) = 1.

2 Another common notation for the characteristic function of S is x,, using the Greek letter chi.

56

Inside Microsoft SQL Server 2008: T-SQL Querying

Cardinality

Informally, the cardinality of a set is the number of elements in the set. For example, the
cardinality of {134, -11, 33} is three because there are three elements in the set. Similarly,
the cardinality of {} is zero, and the cardinality of {Itzik, Lubor, Dejan, Steve} is four. We have
several ways to express the cardinality of a set in words:

The cardinality of S is four.
The set S has cardinality four.
S contains four elements.

Earlier in this chapter, we were careful to point out that sets and depictions of sets are
different things. We also noted that it's important to know what the universe is. These
details are still important. As sets of integers, {1+1, 5-2, 2+1}, {2, 3, 3}, and {3, 2} all denote
the same set: the set containing the two integers 2 and 3, which has cardinality two. As sets
of arithmetic expressions, however, they aren’t the same; the first contains three elements
(because it contains three different expressions), whereas the second and third each contain
two elements.

Mathematicians use the shorthand notation |S| for the cardinality of the set S. It's identical to
the notation for the absolute value, and context clears up the meaning: if S is a number, |S] is
the absolute value of S, and if S is a set, |S| is the cardinality of S.

Formal and Constructive Definitions of Cardinality

Most formal definitions of cardinality use the idea of a one-to-one correspondence. If the
elements of S can be put into one-to-one correspondence, or matched up, with the integers
from 1 up to k, S is said to be finite and have cardinality k. This works in part because of the
rather obvious (but nontrivial to prove) fact that the elements of a set can be matched up
with the integers from 1 to k for at most one value of k. The formal definition of cardinality in
terms of correspondence lends itself to an effective treatment of infinite sets.

For finite sets, we can give a constructive definition of cardinality in terms of characteristic
functions. Recall that every set S is characterized by a function 1 (the characteristic function
or membership function or S), where 1(x) is defined and equal to either 0 or 1 for each x in
the universe for S.

Definition: Let S be a finite set with universe U. The cardinality of S is defined to be the sum

of the values 1(x). In other words, |S]| := ¥, ., 1:(X)

A number of useful results about cardinality follow from this definition and earlier results
about characteristic functions.

Chapter 2 Set Theory and Predicate Logic 57

A Simple Result about Cardinality

The cardinality of the empty set is zero: |J| = 0. Recall that 1,(x) always equals zero.
Therefore, || is a sum of zeros and equals zero.

Order

If | asked you to put the numbers 12.4, 5.2, 16.0, and 0.7 into numerical order, you'd list them
this way: 0.7, 5.2, 12.4, 16.0. Similarly, if | asked you to alphabetize the names Itzik, Steve,
Dejan, and Lubor, you'd list them in the following order: Dejan, Itzik, Lubor, Steve. In each
case, you can do this because given two different names (or numbers), it's always the case
that one of them precedes the other, and you know the rule.

A set of values can be put into order when we have an appropriate notion of is less than,
comes before, or precedes. In this section, we'll investigate notions of precedence, and in
particular, we'll identify what properties allow us to use a given definition of precedence
to put things in order. Mathematically, precedes (for a given universe, such as numbers or
names) is a Boolean-valued function of two variables, where the domain of each variable is
the given universe.

Numerical Order

When we talk about numerical order, precedes means is less than, and x is less than y is
usually written as x<y. With regard to real numbers, everyone agrees on the meaning of <.
We say x<y if and only if y—x is a positive number.

Note The astute reader might catch the fact that this definition of < is problematic because

we haven't defined the term positive. In fact, we haven't defined a lot of things, such as what the
number 5.2 means, for example. Fortunately, as long as you and | agree on the rules of arithmetic
and simple notions like positive, we'll be fine. A thorough development of the real number
system is well beyond the scope of this chapter.

Alphabetical Order

When we talk about alphabetical order, the meaning of precedes is culture dependent.

In most programming languages, the precedes operator for strings is denoted <, just like

it is for numbers. And in most programming languages and cultures, alphabetical order
would provide that Dejan < ltzik, Itzik < Lubor, and Lubor < Steve. However, there's often no
consensus among cultures about alphabetical order, and it's often not obvious what cultural

58 Inside Microsoft SQL Server 2008: T-SQL Querying

rules the < operator is using. In T-SQL, you can sometimes apply cultural rules explicitly by
specifying a collation, as I've done in the following example:

DECLARE @Names TABLE (
name VARCHAR(20)
)5

INSERT INTO @Names VALUES
('DeSzmetch'), ('DESZMETCH'), ('DESZMETCK'), ('DesZmetch'), ('deszmetch');

SELECT
name,
RANK() OVER (ORDER BY name COLLATE Latinl_General_BIN) AS [Lat...BIN],
RANK() OVER (ORDER BY name COLLATE Traditional_Spanish_CI_AS) AS [Tra...CI_AS],
RANK() OVER (ORDER BY name COLLATE Latinl_General_CS_AS) AS [Lat...CS_AS],
RANK() OVER (ORDER BY name COLLATE Latinl_General_CI_AS) AS [Lat...CI_AS],
RANK() OVER (ORDER BY name COLLATE Hungarian_CI_AS) AS [Hun..._CI_AS]

FROM @Names

ORDER BY name COLLATE Latinl_General_BIN;

This is the output:

name Lat...BIN Tra...CI_AS Lat...CS_AS Lat...CI_AS Hun..._CI_AS
DESZMETCH 1 2 4 1 2
DESZMETCK 2 1 5 5 5
DeSzmetch 3 2 3 1 2
DesZmetch 4 2 2 1 1
deszmetch 5 2 1 1 2

As you can see from the output, there's no single correct way to rank the names DeSzmetch,
DESZMETCH, DESZMETCK, DesZmetch, and deszmetch in alphabetical order.

Note in particular that alphabetical order doesn't necessarily order strings in a character-by-
character fashion. In the language of T-SQL, understand that you cannot expect these two
ORDER BY clauses to produce the same results, even though for some collations they will:

ORDER BY string;

ORDER BY
SUBSTRING(string,1,1),
SUBSTRING(string,2,1),

Trichotomy

Given two real numbers x and y, x is either less than, equal to, or greater than y. This
fundamental property of the real numbers, that exactly one of x<y, x=y, and x>y is always
true, is known as the law of trichotomy.

Chapter 2 Set Theory and Predicate Logic 59
Induced Order

The comparison operator < is what allows us to put real numbers into order—to sort them.
Another way to say this is to say that the usual ordering of the real numbers is the ordering
induced by the < operator.

By this point, you should be suspicious every time | use the word the, and | used it in the
previous sentence in the ordering. Not every comparison operator on a set of things induces
a well-defined ordering, or an ordering at all, but less-than for numbers does.

A Trichotomous > That Doesn’t Induce an Ordering

In the game rock-paper-scissors, the rules say that rock beats scissors, paper beats rock,
and scissors beat paper. The idea of beats is a comparison, so we could define the >
operator on the set {rock, paper, scissors} to mean beats, according to the game's

rules. It shouldn't take you long to realize that it's not possible to order rock, paper,
and scissors from “best to worst” according to the > operator. In this case, then, “the
ordering induced by the > operator” is not well-defined.

The < operator for real numbers induces what mathematicians call a total order. To induce
a total order, a comparison operator not only has to be trichotomous but also has to be
antisymmetric and transitive. We'll take a look at these properties later.

Ordinal Numbers

Earlier, | defined cardinality for finite sets. In particular, | observed that cardinality was
well-defined. The question “The set S contains how many elements?” asks for a well-defined
answer, which might be “The set S contains 10 elements.” Notice how this question about
cardinality and the sentence that answered it follow the pattern illustrated in Table 2-6.

TABLE 2-6 A Question Answered by a Cardinal Number

Description Sentence

Question sentence The set S contains how many elements?
Question-word identified The set S contains how many elements?
Question-word replaced by a fill-in-the-blank The set S contains ~ elements?

Blank filled in to produce the answer sentence The set S contains 47 elements.

Mathematical version of the question Solve for n: |S| = n.

Given a set S, the question in this case ("The set S contains how many elements?”) has a
well-defined right answer. That's because the cardinality function, which answers "how many
elements” questions about sets, is a well-defined function. Numbers that answer a how many
question are called cardinal numbers in mathematics because they express the cardinality of
a set. The finite cardinal numbers are exactly the nonnegative integers, by the way, although

60

Inside Microsoft SQL Server 2008: T-SQL Querying

there are many different infinite cardinal numbers. Infinite sets are not all infinite in the
same way, one could say. Unfortunately, we won't have a chance to look into that fascinating
corner of mathematics here.

Table 2-7 offers the same analysis of a similar question and its answer.

TABLE 2-7 A Question Answered by an Ordinal Number

Description Sentence

Question sentence The number x appears in the list L in what position?

Question-word identified The number x appears in the list L in what position?

Question-word replaced by a fill-in-the-blank ~ The number x appears in the listLin __ position?

Blank filled in to produce the answer sentence The number x appears in the list L in the 47th
position.

Mathematical version of the question None (explanation to follow).

In the answer | gave, the number 47 (or the word 47th) is an ordinal number. In mathematics,
an ordinal number is a number that can represent a position in order (as opposed to a
cardinality). In the finite realm, the ordinal numbers and the cardinal numbers are the same,
but we still have a reason to look at them separately.

Whichth One?

An easier way to ask for the position of x in the list L is this:
Whichth number in L is x?

The only problem is this: whichth isn't a word. But what a useful word it (and whenth)
would be! If a new acquaintance mentioned that she had six siblings, you could ask
whichth oldest she was. You could ask some one whenth they arrived at work this
morning, if you wanted to find out if they arrived first, second, third, or so on, as
opposed to what time they arrived. Or in whichth place their daughter’s team finished
in the soccer league this season.

You can ask these questions directly in Chinese, it turns out, because (roughly speaking)
there’s a word for th: Z5. Just as you can find out how many of something there are by
asking "how many” (J1'1?) there are, you can find out the position of something by
asking whichth (85J11°?) one it is. It's amazing that English has no word for whichth.

Notice that | didn't give a mathematical version of the ordinal number question, nor have

| defined a notation for the ordinal number representing x's position in L. The cardinal number
question about S had a simple answer |S|. One reason we have no “ordinality” function is

that the notion isn't well-defined. While x may indeed appear in the 47th position of the list

L, it may also appear in the 46th position. Other values of x may not appear in the list at all.
Cardinality is well-defined but not “ordinality,” at least not in a way that’s simply analogous.

Chapter 2 Set Theory and Predicate Logic 61

SQL, however, provides functions for both cardinality (COUNT) and ordinal position (ROW_
NUMBER, RANK, and DENSE_RANK). If the elements of L are ordered by their xCol value, and
@x is one of the values in the column xCol, all of @x’s position(s) in L can be retrieved with
this query:

WITH T AS (
SELECT
ROW_NUMBER() OVER (ORDER BY xCol) as rn,
xCol
FROM L

)
SELECT rn
FROM T
WHERE xCol = @x

The two rank functions answer a more precise question, and that question, unlike the question
“What is the row number of x?," is well-defined.

Set Operators

Arithmetic operators such as +, >, and — are surely familiar to you. Some of them, like +,
combine numbers and give a numerical result as in the expression 4+11 (which equals 15).
Others, like >, express relationships. When these operators appear between numbers, the
resulting expression yields a truth value, not another number. For example, > expresses the
relationship “greater than or equal to.” The value of the expression 5>5 is true, and —-8>-5 is
false.

The algebra of sets includes its own collection of useful operators. Like the operators of
arithmetic, some of the set operators combine two sets and yield a set, while others express
relationships and yield a truth value. I'll define the most important set operators in this
section, and because the notation for these operators isn't universal, as it is for the operators
of arithmetic, I'll mention alternate notations or definitions when they exist.

Definition of Subset

Let A and B be sets with the same universe U. The set A is called a subset of B (denoted
ACB) if every element of A is an element of B. Either of the following can also be used
as the definition:

AcBifand only if 1 ,(x) < 1g(x).
ACB if and only if for every xeU, (x€A—x€&B).

Note The subset relation is sometimes denoted as C, but for some authors, ACB means
something different: that A is a proper subset of B (a subset of B that is not equal to B).

62 Inside Microsoft SQL Server 2008: T-SQL Querying

The following results follow from the definition of subset:

B The empty set is a subset of any set: For any set S, @cS. This follows easily from the
fact that 1,(x) = O for all xeU.

B If ACB, then |A| < |B|. From earlier results about characteristic functions, the terms in
the sum for |B| are each less than or equal to the corresponding term in the sum for |A|.
Note that conversely, |A| < |B| does not imply that ACB.

Definition of Set Complement

Let S be a set with universe U. The complement of S, denoted SC, is the set containing
those elements of U that are not elements of S. Either of the following properties of the
complement of S can also be used as the definition:

The characteristic function of S is the function f(x) = 1 — 14(x).

SC€ = {xeU : x&S}.

Note The complement of S is sometimes denoted as S’ or S.

Several results follow from the definition of the complement:

B Every element of U is an element of S or an element of S¢ but not both.
B The complement of the complement of Sis S: (S)C = S.

B The complement of the entire domain of discourse U is the empty set: U=, and the
complement of the empty set is the entire domain of discourse U: @C=U.

Union and Intersection

Given two sets with the same universe, we may need to consider the single set of elements
contained in either set. This is the union of the sets. Similarly, we may wish to consider the set
of elements contained in both sets. This is the intersection of the sets.

Definitions of Union and Intersection

Let A and B be sets with the same universe U.

The union of A and B, denoted AUB, is the set containing those elements of U that are
either elements of A or elements of B (or elements of both). Either of the following can
also be used as the definition:

1, ()= max(L,(x),14(x)).

AUB = {xelU : x€A or x&Bj}.

Chapter 2 Set Theory and Predicate Logic 63

Let A and B be sets with the same universe U.

The intersection of A and B, denoted ANB, is the set containing those elements of U
that are both elements of A and elements of B. Either of the following can also be used

as the definition:
1, ()= min(1,(x),15(x)).

ANB = {xeU : x€A and xEB}.

Set Difference

Sometimes, we may wish to consider those elements of a set that are not elements of a
second set. The set difference operator gives us the result.

Definition of Set Difference

Let A and B be sets with the same universe U.

The set difference of A and B, denoted A\B, is the set containing those elements of U
that both elements of A and non-elements of B. Either of the following are equivalent
and can be used as the definition:

1 A g(¥)= max(0,1 ,(x)-14(x)).
A\B = ANB<.

A\B = {xeU : xeA and x&B}.

Set Partitions

Given a set S with universal set U, and an element x€ U, x is either in S or S¢, but not both.
The two sets S and S€ are said to partition U, and {S,5} is called a partition of U. Note that
the word partition is used both as a verb and as a noun. More generally, a collection of sets
partitions S if every element of S is in exactly one of the sets.

Definition of Set Partition

Let S be aset, and let A}, A,, ..., A, be subsets of S. The sets A, A,, ..., A, partition S,
and {A}, A,, ..., A} is a partition of §, if the following two conditions hold:

The union of the sets A; is S.
The sets A; and A; are disjoint whenever i#j.

Sets with the latter property are called pairwise disjoint.

64

Inside Microsoft SQL Server 2008: T-SQL Querying

If {A}, A, ... A} is a partition of S, the answer to "In which A; is the element x?" is
well-defined.

We've already seen one example of a partition: Given a set S with universe U, the sets S and
SC partition U.

Generalizations of Set Theory

An understanding of basic set theory is a great help, but it's important to recognize its
limitations in describing the world, and in the case of this book, T-SQL querying. I've already
addressed some of the ways in which mathematics fails to represent the world precisely, but
one generalization of set theory is particularly relevant to databases.

Multiset Theory

It's a mathematical fact that the sets {2, 8, 4, -4}, {-4, 8, 4, 2}, and {2, 4, 2, 8, -4, 8, 2, 4, -4} are
equal, but you would probably agree that the last set listed “contains three twos.” Of course,
a set S of numbers can't “contain three twos.” It can either contain a two or not contain a
two. If it contains a two, 1¢(2) = 1. If it doesn't, 1¢(2) = 0, and nothing else is possible.

It's possible to accommodate the idea of “multiple membership” in set theory, except that it
would no longer be set theory, it would be multiset theory, sometimes known as the theory
of bags. The simplest way to begin developing a theory of multisets is by generalizing the
characteristic function.

The Multiplicity Function of a Bag

If B is a bag (or multiset) with universe U, the multiplicity function of B, denoted M, is
the function on U that tells how many copies of an element B contains.

Many definitions from set theory extend almost unchanged to bag theory if the characteristic
function is replaced by the multiplicity function. For example, the multiplicity function of

an intersection can be taken to be the minimum of the multiplicity functions. Other notions
are far more problematic. It's not clear how to define a multiset's complement, for example.
Should universal sets contain an unlimited number of each of their elements, and should

the complement of any finite multiset be infinite? Because set cardinalities have more than
one “size” of infinity, which size should be used for multisets?

The problems with multiset theory often lead database theoreticians to outlaw duplicate
rows within a table—for example, by requiring primary key constraints. It's harder to
prevent result sets from containing duplicates, however. This would require changing the
meaning of SELECT to what is now written as SELECT DISTINCT, and this would create other
complications, particularly with aggregates. T-SQL, like most SQL dialects, supports multisets

Chapter 2 Set Theory and Predicate Logic 65

in most places but not everywhere. T-SQL, for example, doesn't support EXCEPT ALL and
INTERSECT ALL, only EXCEPT DISTINCT and INTERSECT DISTINCT.

Predicate Logic

Predicate logic is a mathematical framework for representing and manipulating expressions
that are true or false: facts and falsehoods.

Logic-Like Features of Programming Languages

T-SQL, like many programming languages, incorporates true-false expressions and logical
operators in several places, not all of which are, strictly speaking, related to predicate logic.

Note A true-false expression is called a Boolean expression (after the logician George Boole).
Boolean logic begins with the study of Boolean expressions.

The Keyword IF in Control-of-Flow Statements

Although the focus of this book is on T-SQL's query language, and SQL's central (or at least
most interesting) paradigm is set based, “regular” programming based on decision and rep-
etition is also implemented. For example, many of this book’s code samples begin with a
conditional statement to delete an object if it already exists. You encountered this statement
in Chapter 1, “Logical Query Processing":

IF OBJECT_ID('dbo.Orders') IS NOT NULL DROP TABLE dbo.Orders;

This is a valid T-SQL statement, and it conforms to the syntax SQL Server Books Online gives
for an IF...ELSE statement:

IF Boolean_expression { sql_statement | statement_block }
[ELSE { sql_statement | statement_block }]

The Boolean expression is OBJECT_ID(‘dbo.Orders’) IS NOT NULL, and the sql_statement is
DROP TABLE dbo.Orders.

The way in which a program implements decision making or repetition is often referred to as
the program'’s logic. Formal logic, however, isn't about what happens when a program runs,
nor is it about the way in which programs implement algorithms to solve problems.

In particular, the expression if <this> then <that> in formal logic bears nothing more than a
superficial resemblance to the statement IF <this> THEN <that> in a programming language.
The former is a sentence that in its entirety is either true or false; the latter is an instruction to
produce behavior that depends on whether <this> (not the entire statement) is true or false.

66

Inside Microsoft SQL Server 2008: T-SQL Querying

While formal logic might not have anything to say about an IF statement in SQL, it has

plenty to say about one particular element of an IF statement: the part that SQL Server Books
Online calls the Boolean_expression and that | called <this> in the preceding paragraph.
Boolean expressions appear in other control-of-flow structures, such as SQL's WHILE loop.
Additionally, logic provides a framework that allows us to validate programs—to determine
whether they in fact express the desired intent and produce the correct control-of-flow.

Propositions and Predicates

Propositions and predicates are types of Boolean expressions: expressions that evaluate to
one of the two truth values in Boolean logic: True or False.

Definitions of Proposition and Predicate

A proposition is a statement that is either true or false. A predicate is a proposition
that contains one or more variables or parameters; in other words, a predicate is a
parameterized proposition. Both propositions and predicates are Boolean expressions.

For example, “12 + 7 = 21" is a proposition (it happens to be false). “It is raining” is also a
proposition, although its truth value depends on context and interpretation. “It is raining”
answers the question “Is it raining?” For the question to have an answer of yes or no, context
must provide the answers to “Where?” and "When?", and the interpretation of “raining” must
be specific enough to yield a clear yes or no answer.

Note In fact, the truth value of “12 + 7 = 21" also depends on context and interpretation. It
depends on the interpretation of the symbols 12, +, 7, =, and 21. If this statement were made in
the context of a lecture on octal arithmetic, the interpretations of 12 and 21 would be ten and
seventeen, respectively, and the statement would be true. Alternatively, if 12 + 7 = 21 were part
of a logic puzzle about an alternate universe where mathematical symbols were interpreted
differently, the truth value might be different.

Don't forget the importance of context. I've seen plenty of unwelcome T-SQL surprises from
propositions like (OrderDate > '12/01/04’). In the United States, '12/01/04’ represents December
1, 2004, but in most of the rest of the world, it represents January 4, 2012. If you need to express
the 2004 date in a context-free way, this is one option: '2004-12-01700:00:00.000".

Some propositions, while clearly true or false, may depend on more than one fact. For example,
“Panama and Norway are members of the United Nations” is true because Panama is a member
of the United Nations and Norway is a member of the United Nations. The proposition “Either
the earth travels around the sun or the sun travels around the earth” is true because the earth
travels around the sun.

Chapter 2 Set Theory and Predicate Logic 67

Other propositions assert the existence or universality of facts in a collection. For example,
“Every order has been shipped” asserts many facts at once. “Someone is logged into the
system” asserts the existence of at least one fact. Database programming languages such as
SQL are well equipped to handle these kinds of statements, though some can be expressed
more directly than others. As a tool, formal logic helps us express assertions like these precisely,
construct SQL statements to evaluate them, and build confidence in our code’s correctness.

Boolean Expressions in T-SQL

Boolean expressions appear in the syntax of several T-SQL statements. Most important,
Boolean expressions follow the keywords WHERE, ON, and HAVING to help filter a query’s
result set and in CHECK constraints to provide data integrity. Boolean expressions also follow
the keywords IF and WHILE to control program flow and repetition, and they appear in the
CASE WHEN expression.

Proposition or Predicate?

| defined a proposition as a statement that has a specific truth value. The expression x<3
contains a variable and has no fixed truth value and is therefore a predicate, not a proposition.
On the other hand, the expression x<3+x also contains a variable, but it does have a fixed truth
value, or at least it seems to in the context of real numbers. Unlike for x<3, the truth of x<3+x
doesn’t depend on the value of x. Does this make x<3+x a proposition?

The name doesn't really matter. It's more important to understand what things mean, not
what to call them. When we say that x<3+x is true, we mean that it's true for all x-values.
We could also consider whether x<3 is true for all x-values, and our conclusion would be
that it's not. In the same sense that x<3+x is true, then x<3 is false, but we aren’t usually so
quick to assign a single truth value to the expression x<3. New terms are sometimes used to
distinguish situations like this: x<3+x might be called an identity, and x<3 might be called an
equation or inequality. These words can be useful, but they aren't easy to define rigorously.

No matter how we name expressions, recognizing things that are implied or hidden—such
as for all x-values—is useful and sometimes crucial. Perhaps the most ubiquitous example
of something hidden or implied is a dependence on time. As | type this sentence, | can

say truthfully that George W. Bush is the president of the United States. As you read the
sentence, however, my assertion is not true. There is a hidden dependence on time, and an
understanding that adds “right now" to the proposition.

Creating Propositions from Predicates

It's important to understand that any predicate with one variable x can be transformed into a
proposition by preceding it with “For every x in the universe of discourse, ..." The process of
taking the open sentence P(x) and turning it into “For every x in the domain of discourse, P(x)

68

Inside Microsoft SQL Server 2008: T-SQL Querying

is true” is called universal quantification. Although there's an x in “For every x in the domain
of discourse, P(x) is true,” the truth value of the sentence doesn’t depend on a value of x.
In fact, you can't even plug in a value of x.

Universal quantification is one of three important ways to create a proposition from an
open sentence. Another is existential quantification, preceding the proposition with “There
exists at least one value of x in the domain of discourse for which.” The following quantified
statement is true: “There exists at least one real number x for which x < 3."

A third way to create a proposition out of an open sentence is to provide a specific value for
the variable. If P(x) is the statement x<3, then P(2.5) is the statement “2.5<3", and is true. P(8),
however, is false.

Ways to Give a Truth Value to a Predicate

Let P(x) be a predicate, and let U be the universe of discourse for values of x. Also let z
be a particular element of U. Then each of the following is a proposition:

B P(x) is true for every x€U. This is notated as: VxeU, P(x).
B P(x) is true for at least one x€U. This is notated as: Ix€U such that P(x).

" P2

The formalism doesn’t prevent mathematicians and others from asserting the truth of
something like x<x+3. But when a mathematician asserts the truth of x<x+3, it's understood
that she means VxeU, x<x+3.

It's also common practice not to specify the quantifier in the case of if-then statements. If
the universe of discourse is the set of integers, the statement “If n is positive, then n2 > n" is
understood to mean this: For all integers n, (n is positive — n? > n).

The Law of Excluded Middle

The law of excluded middle requires that every well-formed proposition is either true or
false—that there are two truth values and no more. The word middle means some middle
ground on the true-false scale that is neither true nor false. We take the law of excluded
middle as a principle of logic.

The law of excluded middle is what allows mathematicians to prove theorems with the
technique known as proof by contradiction.

And, Or, and Not

If P and Q are propositions, they can be combined using logical operators to form other
propositions. For example, the logical expression PAQ (spoken as P and Q) is also a

Chapter 2 Set Theory and Predicate Logic 69

proposition, and its truth value depends on the truth values of P and Q. This operator,
logical and, is one of four basic logical operators.

Definitions of the Basic Logical Operators

Let P and Q be propositions. The three most basic logical operators are defined in Table 2-8.

TABLE 2-8 Definitions of Logical Operators

Operator Notation Meaning True if and Only if: Alternate Name
Not -P Not P P is false. Negation
And PAQ PandQ Both P and Q are true. Conjunction
Or PVQ Por Q (or both) At least one of Pand Q Disjunction
is true.

Note that conjunction and disjunction are commutative operators: the positions of P and Q
can be interchanged without changing the truth value.

What Not Is Not

Combining and transforming mathematical sentences with logical operators is important,
and generally straightforward. However, as is often the case in life, what seems simplest is
what causes the most trouble because we tend to be less careful about it. Applying the
logical operator not, or negating propositions, is not something to do lightly. All too often, it
seems right (but isn't) to negate a proposition by negating everything in sight or by using an
invalid generalization. Here’s one example: the negation of the proposition x<3 is x = 3. On
the other hand, the negation of —-1<x<3 is not —-1=x>3. (What is the correct negation?)

When And Means Or

In English and other natural languages, the words and and or are used in a wide variety of
situations. In some of these situations they have meanings that seem to contradict their
meanings as logical operators. Because of this, you should never be hasty when you attempt
to express a real-world notion logically.

In the WHERE clause of a query, combining conditions with AND serves to make the number
of rows in the result set smaller. However, the English and often corresponds not to the AND
of a query's WHERE clause but to the logical operator OR or the set operator UNION.

Consider the following English request:
Please bring me the latest invoices for customer 45 and customer 17.

This doesn't translate into the query predicate custid=45 AND custid=17. Instead, it probably
translates into the query predicate custid=45 OR custid=17. On the other hand, this English
request doesn't follow the same pattern:

Please bring me the latest recipes for ham and eggs.

70

Inside Microsoft SQL Server 2008: T-SQL Querying

Exclusive Or

In English, when or doesn’'t mean and, it still doesn’t always mean the same thing as logical
or. Logical or means one or the other or possibly both. Sometimes the English word means
one or the other but not both, which in a mathematical discussion is distinguished by the
name exclusive or. An example of this can be found on many restaurant menus in the phrase
“includes soup or salad.”

Logical Equivalence

Two value expressions of any kind are considered equal if they have the same value: 3+3
equals 6. Expressions that contain variables are considered equal if they are equal for any
particular variable values: Regardless of what x, y, and z happen to be, {xy,z} = {axy.z} N
{b,xy,z}. Predicates, which are logical propositions containing variables, are said to be logically
equivalent if they have the same truth value for any particular values of their variables. Several
different symbols are used to represent logical equivalence and some very similar notions.

| won't get into any of the subtleties, and from among the possible symbols, which include

=, —, and <, I'll use the last one, the bidirectional double arrow.

DeMorgan's Laws

Logical expressions can be rewritten as equivalent logical expressions in a number of ways.
Two of the most useful and important identities provide ways to rewrite negations, and they
are called DeMorgan'’s Laws, after Augustus DeMorgan.

Statement of DeMorgan’s Laws

Let P and Q be propositions. Then the following equivalences hold:
(PVQ) < (RPIA(=Q).
~(PAQ) = (=P)V(=Q).

Logical Implication

Mathematical logic was developed largely as an attempt to justify the way in which
mathematicians prove theorems through inference and deduction. One of the most
important rules of inference is called modus ponens. Modus ponens is the rule of inference
that allows us to infer the truth of one proposition Q from the truth of another proposition P
when it's known that P implies Q. An argument using modus ponens might go like this: “The
law is clear: if you drive faster than 55 miles per hour on this highway, you have broken the
law. You were driving faster than 55 miles per hour, therefore you have broken the law.”

Chapter 2 Set Theory and Predicate Logic 71

Logical inference isn't the focus of this chapter, but we will take a moment to consider
propositions that take the form of logical implication.

If P, Then Q

Suppose P and Q are valid logical propositions. Then if P, then Q is a valid logical proposition.
The proposition if P, then Q is denoted P—Q, and its truth value depends on the truth values
of P and Q as follows.

Definition of P—Q

The proposition P—Q, read P implies Q or if P, then Q, is true when either P is false or
Q is true (or both). The proposition P—Q is false when P is true and Q is false. More
concisely, (P—Q) < (=P VQ).

There is more than one way to express an implication in words, and in mathematical logic,
the following expressions are taken to have the precise meanings shown:

1. Punless Q means (-Q)—P.

2. Ponlyif Q@ means P—Q.

3. P if Q means Q—P.

Note that unlike the logical operators A andV, the operator — is not commutative. The truth
values of P—Q and Q—P are not necessarily the same.

The Contrapositive

The definition (P—Q) < (= P v Q), together with DeMorgan’s law for negating conjunctions,
yields the following fact: (P—Q) < (-Q—-P). The implication If not Q, then not P is called the
contrapositive of If P then Q. In mathematics, it's often easier to discover rules of inference
that validate the contrapositive form of an implication, and doing so is called proof by
contrapositive.

Vacuous Truths

According to the definition of logical implication, the statement P—Q holds except when P
is true and Q is false. In particular, it holds whenever P is false, regardless of the truth value
of Q. As a result, some if-then statements are logically true but may sound false or seem
puzzling. For example, these propositions are both true:

If 1=0, the moon is made of cheese.

If the real number x is negative and positive, then x equals 11.

72

Inside Microsoft SQL Server 2008: T-SQL Querying

In both propositions, the if part of the implication is false, so the entire if-then statement

is true. Because implications figure prominently in logical inference, we're accustomed to
encountering implications in a context where the if part is true, and the implication allows
the then part to be deduced. This isn't the case in the preceding statements. No inference is
possible, and the statements provide no information about the truth value of the then part.

An implication P—Q is called vacuously true if P is false. Similarly, the quantified statement
xeU (P(x) —Q(x)) is called vacuously true if P(x) is false for all values of x in its domain of
discourse. The reason for this terminology is simple: the statement VxeU (P(x) —Q(x)) asserts
that Q(x) holds whenever P(x) holds. If P(x) never holds, the statement asserts nothing at all.

Quantification

Statements that assert either the universality or the existence of some fact over a universe of
discourse are called quantified statements. Here's an example of each kind. The words in italic
are the ones that indicate quantification.

Universally quantified statement The Philharmonic has performed every Haydn symphony.

Existentially quantified statement The Philharmonic Orchestra has performed a Haydn
symphony.

Negating Quantified Statements

The ability to negate quantified statements is a valuable skill for programmers, especially
SQL programmers. As ltzik shows later in this book, some problems are easier to solve when
analyzed using reverse logic. Instead of finding all the answers to a question, find everything
that isn‘t not an answer.

Earlier in the chapter, | warned you that to negate a proposition, you can't simply negate
everything in sight. The logical opposite of an advertising claim that “all our books

are discounted” is not “all our books are not discounted,” nor is it “none of our books are
discounted,” nor is it “all our nonbooks are discounted.” The actual logical opposite—which
expresses simply that the claim is false—is “it is not true that all our books are discounted,” or
equivalently, “at least one of our books is not discounted.” While we might also say this more
simply as “not all our books are discounted,” this use of “not all” invites misinterpretation or
at least mistranslation when translated into a computer program.

Two general principles concern the negation of quantified statements. Universally quantified
statements are false if there is one exception to the universal claim they make. Existentially
quantified statements are false if there are no examples of the existence they claim.

Generally, universal statements may be hard to prove (because their validity must be verified
universally) but easy to disprove (because one exception violates the universality). On the
other hand, existential statements may be easy to prove (only one valid example is enough)
but hard to disprove (because everything must be proven invalid).

Chapter 2 Set Theory and Predicate Logic 73

Here are the rules for negating quantified propositions, using notation. Recall that V means
for all, and 3 means there exists.

Rules for negating quantified predicates
Let P(x) and Q(x) be predicates, where U is the domain for x.

=(VWxeU, P(x)) < IxeU for which = P(x)
YxeU, P(x) < —(3xeU for which = P(x))
=(3IxeU for which P(x)) < WxeU, -P(x)

AxeU for which P(x) < =(VxeU, =P(x))

These rules generalize DeMorgan'’s Laws. If U={a,b,c,...}, to say that P(x) is true for all
elements of U is to say that P(a), P(b), P(c), ... are all true, or equivalently, that the conjunction
P@APB)APA. .. is true. Similarly, to say that there exists at least one value x in U for

which P(x) is true is to say that either P(a) or P(b) or P(c) or ... is true, or equivalently, that
P@@)VP(b)VPE)V... is true.

Multiple Quantification

This chapter’s first example contained two quantifiers. The membership condition for the set
S was VeeUSAEmployees (Jo&Orders : (handled(e,o,c))), hence the condition for ¢ not to be a
member of S was this: ~(Ve cUSAEmployees (Jo Orders : (handled(e,o0,c)))).

The rules for negating quantified propositions allow us to rewrite this condition as follows:
-(VecUSAEmployees (Jo Orders : (handled(e,o,c))))

& JecUSAEmployees for which - (Jo&Orders : (handled(e,o,c)))

< FJecUSAEmployees for which (Vo €Orders, —handled(e,o,c))

Each version gives the condition for not returning a particular customer ¢, and the last one
can be expressed in English this way: There is some employee e from the USA for whom we
can say this about every order o of the company: it is not the case that o was handled by
employee e for customer c.

Alternatives and Generalizations

There a number of alternatives and generalizations to predicate logic. Some model true-false
statements differently, and others handle more general notions of truth. In this section, I'll
briefly mention one alternative framework and two generalizations to predicate logic.

74

Inside Microsoft SQL Server 2008: T-SQL Querying

Boolean Algebra

It's possible—and for many purposes very useful—to place logic into a framework where

the truth values True and False are associated with the numbers 1 and 0, respectively. In fact,
SQL Server's integer data type BIT is often used for logical calculations. SQL Server provides
several integer operators, &, ~, A, and |, that apply calculations bitwise, or separately on the
individual bits that make up the integer’s internal representation. Loosely, these four operators
correspond to and, not, exclusive or, and or, respectively. As you might guess, T-SQL's ~ operator
is easily confused with the operator A, which is used in logic to mean and. In addition (no pun
intended), the bitwise operator & is easily confused with arithmetic's + operator.

Three-Valued Logic

In the real world, not every important question can be answered. In this very brief treatment
of three-valued logic, we'll see what happens if we abandon the law of excluded middle and
allow a third truth value in addition to the Boolean values True and False.

T-SQL supports Boolean values only for predicates in SQL statements, not as persisted data
in a table. However, T-SQL, like most database query languages, supports three truth values:
True, False, and UNKNOWN.

To some extent, a third truth value representing UNKNOWN can be accommodated in
propositional logic. Recall the law of excluded middle. It states that for any proposition P,

the proposition (P is true or P is false) holds. The law of excluded middle doesn't address the
discoverability of P’s truth value; it only asserts that P has one. In the real world, however, the
discoverability of truth matters, and the need for a third truth value comes up in the context
of missing information.

Missing information can cause havoc in a business setting. Suppose you find an empty folder
among your customer files; you know a customer file should be there, but the file is missing,
and you have no way to identify the missing customer.

All at once, it becomes impossible to answer a multitude of questions: How many customers
are in arrears? Is Maria Cameron already a customer (assuming she isn't found in any of the
nonmissing files)? These questions have an answer, but until the missing file is found, the
answer will remain unknown. Accommodating UNKNOWN as a truth value in predicate logic
is much more complicated than in propositional logic. The following example suggests that
at best, the waters are murky when UNKNOWN is in the picture.

Recall that set theory and logic were linked via the idea of the characteristic function of a
set. If the truth value of propositions can be unknown, the truth value of set membership
can also be unknown, and a third value (a value other than 0 or 1) is needed for 1.(x). Before
long, however, you'll find yourself needing to distinguish “the value is definitely unknown”
from “we don't know whether the value is true, false, or unknown.”

Chapter 2 Set Theory and Predicate Logic 75

Fuzzy Logic

If you thought three-valued logic was a significant departure from the world of True and
False, fuzzy logic is a further departure. The premise of fuzzy logic is that absolute truths or
falsehoods aren't all we care about or know. We may decide to include a fact in our model
that we are relatively certain of, but not absolutely so. In fuzzy logic, the discrete values False
and True are replaced by the continuum of numbers from zero to one. A zero is an absolute
falsehood, a one is an absolute truth, and in between are the shades of gray.

A system can operate according to a threshold. You might only want to consider facts that
are 99.5 percent likely to be true. Someone else might be willing to deal with 90 percent
likelihood. Creating a rigorous mathematical framework for fuzzy logic is a serious challenge.

Relations

Operators such as = and <, which compare two elements of the same kind and yield a truth
value as a result, are called relations. A relation ~ on elements of a set U can be considered
as the set {(u,v) € UxU : u~u} of pairs of elements that satisfy the relation. Alternatively, ~ can
be considered as a predicate with two variables, each of which has U as its domain.

The Reflexive, Symmetric, and Transitive Properties

The definition of > in the earlier rock-scissors-paper example wasn't typical. Most directional
or bidirectional comparison operators in mathematics, such as <, >, and =, are transitive.
Here's a precise definition of the transitive property and some other useful properties a
relation can have.

Properties of Relations

Let ~ be a relation on the universal set U. In other words, let u ~ v have a well-defined
truth value whenever u and v are elements of U. The relation ~ is said to be reflexive,
irreflexive, symmetric, antisymmetric, or transitive according to the following
definitions:

B Reflexive The relation ~ is reflexive if x~x is true for every x in U.
m |[rreflexive The relation ~ is irreflexive if x~x is false for every x in U.

B Symmetric The relation ~ is symmetric if x~y and y~x always have the same
truth value, when x and y are elements of U.

B Antisymmetric The relation ~ is antisymmetric if x~y and y~x always have
the opposite truth value, when x and y are elements of U.

® Transitive The relation ~ is transitive if whenever x~y and y~z are true, x~z is
also true, when x, y, and z are elements of U.

76

Inside Microsoft SQL Server 2008: T-SQL Querying

Although the names might suggest otherwise, it's not the case that every relation is either
reflexive or irreflexive (or either symmetric or antisymmetric). An example of a relation that is
neither reflexive nor irreflexive is the relation “is the reverse of” on words. There are words w
for which w is the reverse of w, such as radar, but there are also words for which w is not the
reverse of w, like sonar.

Not All < Operators Were Created Equal

Just as it was important to know a set’s universe U, it's important to know a relation’s
universe—it's part of what defines the relation. The symbol < can appear between numbers
or strings in SQL, but the relation < between numbers is not the same thing as the relation <
between strings. If you aren't careful, as the following T-SQL example shows, you can run into
trouble or at least what looks like trouble:

DECLARE @x VARCHAR(10);
DECLARE @y INT;
DECLARE @z VARCHAR(10);

SET @x = '1000';
SET @y = '2000';
SET @z = '+3000"';

SELECT
CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [x<y?],
CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<z?],
CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?]

This produces the following output, which appears to contradict the transitivity of the T-SQL
operator <.

xX<y? y<z? x<z?

TRUE TRUE FALSE

There’s no contradiction because technically “the T-SQL operator <" is ambiguous. The code
sample has two different less than operators: the < operator for numbers, which we might
call <, and the < operator for strings, which we might call <. The rules of T-SQL require
that the expression <string> < <number> be evaluated as CAST(<string> AS <number>) <
<number>.

This T-SQL batch shows what’s going on:

DECLARE @x VARCHAR(10);
DECLARE @y INT;
DECLARE @z VARCHAR(10);

SET @x '1000";
SET @y = '2000';
SET @z = '+3000';

Chapter 2 Set Theory and Predicate Logic 77

SELECT
CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<y?],
CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<CAST(z2)?],
CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?],
CASE WHEN CAST(@x AS INT) < CAST(@z AS INT)
THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<CAST(z)?]

A Practical Application

At the beginning of this chapter, we considered a set S—the set of all customers for whom
every employee from the USA has handled at least one order. We'll finish the chapter by
considering the set S once again, from a different perspective, and turn the result into a
query. I'll also show you how to represent the characteristic function of a set in SQL.

Run the following T-SQL batch to set the database context for this section’s queries:

USE InsideTSQL2008;
GO

In set-builder notation, we were able to write S in this way:
S = {ceCustomers : Ve cUSAEmployees (Jo Orders : (handled(e,o,c)))}

Consider the overall form of this definition in the following way: S is the set of customers for
which something is true for every USA employee. If just a few employees are from the USA,
let’s say ey, e,, and e;, we can write the for every USA employee part as for employee e;, for
employee e,, and for employee e;.

Still assuming there are only these three USA employees, this would be true: S is the set of
customers ¢ for which the following three conditions hold:

1. Employee e, handled an order for customer c.
2. Employee e, handled an order for customer c.

3. Employee e; handled an order for customer c.

Equivalently, S is the set of customers c in all three of the following sets:

1. The set C1 of customers for whom employee e; handled an order
2. The set C2 of customers for whom employee e, handled an order
3. The set C3 of customers for whom employee e; handled an order

Do you see where this is leading? The set S can be written as an intersection of three sets:
S=CInNnC2nC3

78

Inside Microsoft SQL Server 2008: T-SQL Querying

From this, we can express 1, the characteristic function of S: 1c = min(1; ,1c, 1c3). We can
generalize this to the case in which we have any number of USA employees: in general,
1= min(1c(e)), where C(e) is the set of customers for whom employee e handled an order.

For an employee e, the function 1., is easy to describe. It's a characteristic function for a set
of customers, so it has a value of 0 or 1 for each customer. Its value for a particular customer
cis 0 if employee e never handled an order for customer c and 1 otherwise (if employee e did
handle an order for customer c).

Here's how to express the characteristic function 1., in SQL, if the empid value of employee
e is @empid. The following query’s result set is the set of ordered pairs (¢, 1,(c)), one pair
for each customer:

SELECT
custid,
CASE WHEN custid IN (
SELECT custid
FROM Sales.Orders AS 0O
WHERE O.empid = @empid
) THEN 1 ELSE 0 END AS charfun
FROM Sales.Customers AS C

The result set of this query contains one row for each customer, and the charfun value in that
row is the value of the characteristic function of the set of customers served by the employee
whose ID is @empid on the customer in the row: lc(e)(c).

If for each customer ¢ we want to find the minimum value of 1(c) for all USA employees,

we first want a virtual table that contains for each customer a row for each characteristic
function. We can do this by replacing @empid with the column value empid from the table
HR.Employees. Then we can group by customer and find the minimum among the characteristic
function values. Here's the query:

WITH TheseEmployees AS (
SELECT empid
FROM HR.Employees
WHERE country = 'USA'
), CustomerCharacteristicFunctions AS (
SELECT
custid,
CASE WHEN custid IN (
SELECT custid
FROM Sales.Orders AS O
WHERE O.empid = E.empid
) THEN 1 ELSE O END AS charfun
FROM Sales.Customers AS C
CROSS JOIN TheseEmployees AS E

SELECT

custid, MIN(charfun) as mincharfun
FROM CustomerCharacteristicFunctions
GROUP BY custid
ORDER BY custid;

Chapter 2 Set Theory and Predicate Logic 79

This query produces the following result (abbreviated):

O 00 NO VI A WN R
PO OoOORKr OO oo

When the minimum value of 1.,(c) for all USA employees equals 1, customer c is in the set S.
This observation leads us to the query in Listing 2-4, which produces the list of customers for
whom every employee from the USA has handled at least one order. Listing 2-4 also includes
the code to create and drop a supporting index for this query.

LISTING 2-4 Query to find customers who were served by every USA employee

CREATE INDEX sk_custid_empid ON Sales.Orders(custid,empid);
GO

WITH TheseEmployees AS (
SELECT empid
FROM HR.Employees
WHERE country = 'USA'
), CharacteristicFunctions AS (
SELECT
custid,
CASE WHEN custid IN (
SELECT custid
FROM Sales.Orders AS O
WHERE O.empid = E.empid
) THEN 1 ELSE O END AS charfun
FROM Sales.Customers AS C
CROSS JOIN TheseEmployees AS E

SELECT
custid
FROM CharacteristicFunctions
GROUP BY custid
HAVING MIN(charfun) = 1
ORDER BY custid;
GO

DROP INDEX Sales.Orders.sk_custid_empid;

80

Inside Microsoft SQL Server 2008: T-SQL Querying

This query produces the following result, which correctly lists the customers in S:

Custid

The query plan, shown in Figure 2-1, is surprisingly efficient. The warning symbol on the
Nested Loops operator signals a join without a join predicate. This warning always appears
when there is a CROSS JOIN operator in the query, and it's nothing to be alarmed about.

YE - s
— — i - o |
T 1.‘-; L—\ fl_,] L

SELECT Filrer Str;am Agg::g)at,e . If{:rge C.[o;n. . l\:;sced ;0?13? CJ[.\;scired Ir])de[;KSEEnt(CL\.

_ N goregate = emi Join! rmer Join! ustomers]. ustomer
Cost: 0O % Cost: 0O % -

o o Cost: 1% Cost: 40 & Cost: 6 % Cost: 12 %

(53]

Clustersd Index Scan {Clu
[Employees]. [PE_Employ
Cost.: 29 %

b
]

Index Scan (NonClustered)
[Orders]. [sk_custid supid] [0]
Cost.: 13 %

FIGURE 2-1 Execution plan for the query in Listing 2-4 based on characteristic functions

Whether this approach leads to efficient queries depends on the details of the problem and
the characteristics of the actual data. However, we can't deny that this is a flexible query.

By changing the HAVING predicate, the query can easily be modified to answer similar
questions. Here is one example: To obtain those customers for whom at least one USA
employee, but not every one of them, has handled at least one order, use the same query
with a different HAVING clause: HAVING MAX(charfun) = 1 AND MIN(charfun) = 0.

Chapter 2 Set Theory and Predicate Logic 81

Conclusion

This chapter contained a brief introduction to two foundations of modern mathematics

and computer science: set theory and predicate logic. Set theory and logic are particularly
important to understanding SQL and relational databases. Along the way, you learned some
specific techniques, such as how to negate quantified predicates, and some alternate ways
to characterize sets and express logical propositions. One particular tool, the characteristic
function of a set, provided a valuable and flexible key programming technique.

Chapter 3
The Relational Model

Databases are central to information systems—they are the heart of applications. The
structure of a database, called a data model (or schema, also database design), specifies a
database. One of the most important models used for modern databases is the relational
model. Although it is not the only data model, it is probably the most important one. The
relational model is used mainly for transactional databases—where an enterprise’s data is
first stored—as opposed to warehouse databases, which serve as a repository for historical
data. Compared to other contemporary data models, the relational model is particularly
useful for transactional databases because data integrity can be declared and enforced by
the model. Data integrity is the conformance of data to business rules. If your data is wrong
the first time it enters your enterprise, it has a negative impact on your complete business.
For example, analytical systems would not help you improve your operations because of
the common concept garbage in — garbage out. Another advantage to the relational model
is that it is mathematically defined. Therefore, when modeling, you are not guided by best
practices only; you can evaluate your design and firmly ascertain whether it is good or bad.

Relational database management systems (RDBMS), including Microsoft SQL Server, store data
in relational format. Although the physical implementation varies by vendor, the relational
model provides a consistent user perception of the data for all RDBMS. In this chapter, I'll
introduce the main concepts of the relational model. This knowledge will help you understand
later chapters when you explore advanced queries.

Introduction to the Relational Model

The relational model was conceived in the 1960s by Edgar F. Codd, who worked for IBM. It is
a simple yet rigorously defined conceptualization of how users perceive and work with data.
It addresses the three major aspects of data processing in the following way, according to An
Introduction to Database Systems, 8th edition by C. J. Date (Addison-Wesley, 2003):

B Structural The data is perceived by the user as tables and nothing but tables.

B Manipulative Users manipulate the data with an open-ended set of relational
operators. The operators constitute the relational algebra.

B Integrity The tables must satisfy defined integrity constraints.

The structural aspect can also be expressed by the Information Principle, which states that all
information in a relational database is expressed in one (and only one) way as explicit values
in columns within rows of a table.

In the relational model, a table is called a relation, and a row is called a tuple. In the next
section, I'll introduce relations and tuples in more detail.
83

84

Inside Microsoft SQL Server 2008: T-SQL Querying

Relations, Tuples and Types

A relation is the mathematical object that represents what database practitioners call a table.
The elements of a particular relation, like the rows of a table, represent instances of some
real-world entity, like person, place, thing, or event. The relation is the set of these elements,
which are—mathematically—tuples. I'll start by defining a tuple: A tuple is the set of its
attributes, each of which is represented by three things: the attribute’s name, the attribute’s
type, and the attribute’s value.

Note The relational model uses more general notions of relation and tuple than those
introduced in Chapter 2, “Set Theory and Predicate Logic.” In Chapter 2, you learned about
ordered tuples, which had well-defined positional parts: first, second, and so on. Here, tuples

still have well-defined parts, but those parts are unordered, and they are identified by attribute
names instead of ordinal positions. In Chapter 2, a relation was a set of ordered pairs from a
Cartesian product. Here, a relation is a set of unordered tuples that have the same heading. The
notions used in the relational model are more abstract, and making them mathematically precise
is never intuitive.

The set of attribute names and types of a tuple, taken together, are called the heading of
a tuple. You can think of the heading of a tuple as a form to be filled out; the form has
attribute names with blank spaces for values to be filled in. A tuple is a filled-in copy of a
heading form. Tuple properties include the following:

B Every attribute of a tuple contains exactly one value of the appropriate type for each
of its attribute names. Again thinking of a tuple as a filled-in copy of a heading form,
there is exactly one value in each blank space (and it is of the appropriate type for the
particular attribute).

B The attributes have no ordering (just as the elements of a set have no ordering).
Consequently, every attribute must have a distinct name because you cannot refer
to an attribute using its position in a tuple. In terms of forms, the way in which the
attribute names are arranged on the heading form is irrelevant; only the names of the
attributes matter, and, consequently, those names must be distinct.

B Asubset of a tuple is a tuple (with fewer attributes). Again using the form analogy, one
section of a form, viewed by itself, is still a form, but it may have fewer items.

Although it is possible to define operators from relational algebra on tuples, you do not
manipulate individual tuples in a relational database. Operations are performed only on sets
of tuples, that is, on relations. Tuples not only make up relations but also help define them.
A relation consists of a set of tuples with the same heading, and we can call the heading

of these tuples the relation’s heading and vice versa. Similarly, we can think of relations

as having attributes. Relations with different headings are different types of relations. The
data types of attributes, as opposed to the heading types of relations, are sometimes called
domains in the relational model to avoid overusing the word type.

Chapter 3 The Relational Model 85

Just as the contents of a database table might change, a relation should be able to contain
different sets of tuples at different times. The relations of the relational model are actually
variables—sometimes called relational variables, or relvars, and the value of a relational
variable of some type is a set of tuples of that type. We won't always distinguish relations
from relational variables of the same type, following common practice in other areas of
mathematics. We often write "n is an integer” when we should more correctly write “n is an
integer variable,” for example. The fact that a relation is a set of tuples has the following
important consequences:

B Asis the case for tuples, the attributes of a relation have no ordering.

B Every attribute of a relation has one strongly defined data type. Every tuple of a
relation contains exactly one value of this type for each attribute.

B A projection of a relation is a relation, where a projection is an operation that selects a
specific subset of attributes from a relation (and from all of its tuples). Projection is one
of the most important operators in relational algebra.

B A relation has no duplicate tuples. This is a consequence of the fact that a relation is a
set, and sets contain distinct elements. Because a relation’s tuples are distinct, they can
be distinguished by some or all of their attribute values. A minimal subset of attributes
that for any value of the relvar suffices to distinguish tuples is called a key.

B The order of tuples is insignificant. Again, this comes from set theory: the elements of
a set are not ordered. This means that in a relation, terms such as first, next, prior, last,
and nth tuple are undefined.

I've now used the term type multiple times, tacitly assuming that you understand what a type

is. Here's a somewhat formal definition of a type: A type, which is also called a data type or

a domain, is a finite set of values, such as a finite set of integers. Although in mathematics,
universal sets (for example, the integers) can be infinite, in a computer system, you always hit a
limitation. Therefore, a set of possible values of a type is finite. Every value has exactly one most
specific type. When | say “most specific,” | consider the possibility of type inheritance (although
type inheritance is not implemented in SQL Server yet). For example, the value 3 can be
considered a real number, an integer, or a natural number; natural number is the most specific
type for it. In short, you can safely say that every value in a relational database has one type only.

A type consists of the following:
B Aname
B One or more named possible representations:
QO One is physically stored.

0 At least one is declared to the users.

A set of operators permissible on the type's values

B Type constraints

86

Inside Microsoft SQL Server 2008: T-SQL Querying

Every variable and every attribute has an explicit type, every operator returns a result

of some explicit type, every parameter of every operator has an explicit type, and every
expression is implicitly of some type. Physical storage is not exposed to users; it is system
dependent. A type constrains possible values in different ways: with explicit constraints
and with operators defined. For example, for integer type, you can define the operators
Plus, Minus, and Multiply. The operator Divide is not defined as an integer for all pairs of
integers because the result can fall out of the integer domain. The natural numbers are the
integers with a constraint—the number must be positive (or, according to some authors,
nonnegative). Operators and constraints are interleaved. Notice that the Minus operator is
not defined within the natural numbers, even though it was for the integers.

For a type to be useful, it has to implement at least two operators: a mutator operator,
which allows updating variables and attributes of the type, and a selector operator, which
allows retrieving values of the type. Other operators can be defined by the creator of a
type as appropriate to the intended use of the type. Note that a type can have multiple
presentations and thus can have multiple selector operators. For example, a point in a plane
can be represented in Cartesian or polar coordinate systems.

An important concept is whether a type is scalar or nonscalar. A nonscalar type has a set
of user-visible and directly accessible components; a scalar type does not. Scalar types are
also called atomic or encapsulated types. This description is somewhat vague. Is it clear
whether a point in the coordinate plane is scalar? Both Cartesian and polar presentations
have user-visible components. However, if you operate on only whole points and never on
the individual coordinates, an individual point is indivisible and is therefore scalar. What
about the type car? It definitely has user-visible components; still, you normally treat it as
indivisible and therefore scalar. Let me try to give a precise definition. A value is scalar as
long as you operate on it only with operators defined for its type. Operators might retrieve
or update a single coordinate of a point, but as long as those operators are defined on
points (as opposed to numbers), a point is still scalar. A collection of points stored in a string
is nonscalar if you need to operate with points retrieved from the string. If you use this
collection as a string and operate on it with string operators only, then this value is scalar.
How about a collection of points that defines a polygon? If you define a polygon type
explicitly, this is a scalar type. If you operate with points that define corners of the polygon
through operations defined on the polygon type, values of this type are still scalar. Note
that this reflects the real world. Sometimes you treat a value as a scalar of some type and
sometimes as a collection of components where each component has its own type. For
example, you drive a car as if it is a scalar value. When you take your car to a mechanic,
however, the mechanic may treat your car as a nonscalar collection of components.

In relations, only scalar (or atomic) attributes are allowed. This doesn’t mean that points in a
plane cannot be attribute values of a relation; however, the values of the attribute have to be
stored using the most specific type for the points—in other words, the point type and not

as a string of coordinates. Which is the most specific type of a value? That depends on the

Chapter 3 The Relational Model 87

intended use. If you are developing a human-resources application, a picture of an employee
can probably be treated as scalar value of some binary type, and you would model a Subjects
relation using a single attribute Picture. If you are developing a face-recognition application
and need to analyze the picture using some vector graphics, you would model a Subjects
relation using an associated Pictures relation that has its own, more detailed attributes (or,
alternatively, a Subjects relation with detailed attributes of a picture instead of a single
Picture attribute).

At any rate, the relational model is not limited to using a few specific types; it supports all
possible types. Some of the most common types are supplied by an RDBMS. These are called
system types. In addition, an RDBMS should allow you to extend the set of system types

with user-defined types. SQL Server allows the creation of user-defined types in versions 2005
and later.

The Meaning of Relations

As | already mentioned, each relation represents some real-world entity, such as a person,
place, thing, or event. An entity is a thing that can be distinctly identified and is of business
interest. The term entity class can be used instead of entity for a kind of thing (like “person”)
as opposed to a specific example or representation (like “Steve Kass,” which represents a
specific person). Each representation of an entity can be uniquely identified, a fact that
makes it possible to use a relation to represent an entity. Each representation of an entity
plays an important role in the application or system it is represented in. This is the concept of
abstraction: in a database, you only have entity classes (and attributes of those entities) that
have a reason to be there. Each representation of an entity can be described by one or more
attributes. Relationships are associations between entities. A relation is a subset of the cross
products of the entity sets involved in the relationship. Attributes give some information
about entities that is of interest for the application.

The previous paragraph defines the meaning of relations in terms of entities and the
relationships among them, as defined by Peter Chen in his famous paper “The Entity-Relationship
Model—Toward a Unified View of Data,” referenced by most data-modeling books. The
entity-relationship (ER) approach is also the most widely used approach to relational database
modeling—find entities, relationships, and their attributes. However, there is another approach
to understanding what relations mean. | actually prefer the second approach because it is more
natural. In this approach, you describe relations in terms of propositions and predicates.

In Chapter 2, you learned the definition of propositions and predicates. What does this
definition have to do with a relation? In natural language we make assertions about
entities of interest by statements of fact—or, in logic, by propositions. For example, this is

a proposition: The employee with ID number 17 is named Fernando, works in department
D1, and was hired on July 19th, 2003. Generalized forms of propositions are predicates. For
example, this is a predicate: The employee with ID number (Emp#) is named (Name), works

88

Inside Microsoft SQL Server 2008: T-SQL Querying

in department (Dept#), and was hired on (Hiredate). The four terms in parentheses are
placeholders or parameters that correspond to the four values in the preceding proposition.
When you substitute parameters with specific values, a predicate reduces to an individual
proposition. Here are the values for the parameters that reduce the predicate above to the
proposition that precedes it:

(17; Fernando; D1, July 19th, 2003)

You can see that the parameters form a tuple. | wanted you to see that tuples in a relation
actually represent propositions. Just as tuples represent propositions, relation headers
represent the predicates for those propositions. | like this approach because it is very close to
natural language. Just describe a business problem, find predicates, and write them down—
you have your data model. Of course, you need a tool that converts predicates to relations.
This natural language approach to modeling is called object-role modeling. It is described

in Information Modeling and Relational Databases, 2nd edition by Terry Halpin and Tony
Morgan (Morgan Kaufmann, 2008).

But this is not a modeling book. You just need to understand what relations mean. You can
think of them as containers of real-world entities or as predicates and propositions from
natural language. Note that for the predicates I've mentioned so far, there are no constraints
on the tuple values that turn them into propositions, except that they must be values of the
attribute types. | will deal with constraints shortly; for now, let me offer an informal, generic
statement of the kind of rule you enforce with constraints: A proposition that evaluates false
for the relation predicate (header) cannot be a part of the relation at any time.

Views (and Other Virtual Relations)

Views are an important part of a relational database. Also, an important part of queries in an
application are temporary relations (or rowsets in SQL Server terminology). A view is a virtual
relation; it is actually a stored query that is evaluated at run time when needed. A database
user, application developer, or application should not be able to distinguish a view from a
table. This is an important principle—the principle of interchangeability, which states that
there should be no distinction between actual (sometimes called base) relations and virtual
relations. This principle provides logical data independence in a relational database. Logical
data independence can help you a lot with two problems: growth and restructuring. If a table
in a database grows too large, resulting in poor performance, you can subdivide it manually
into several new tables, then unite those tables into a view whose name is the original table
name. The new tables can even be in separate databases or on separate servers. If you need
to restructure a table and cannot change an application that uses it, you can create a view
that returns the original structure to the application. An application uses a view without
knowing it is a virtual relation. However, views cannot provide total data independence. If
you cannot hide all the changes of a table’s structure from an application with a view, you
have to change the application as well. For example, you might need to add an attribute that
has to be inserted by end users manually.

Chapter 3 The Relational Model 89

This concept of interchangeability can be extended further to table expressions—queries
that return relations inside outer queries. You probably already know about derived tables
and common table expressions; you'll learn how to use them efficiently in Chapter 6,
“Subqueries, Table Expressions, and Ranking Functions.”

Naming Conventions

Naming conventions help you make more intuitive designs and write clearer code. Your
choice of convention is not as important as choosing a convention and using it consistently;

| do not want to force a particular one on you. Conventions are a matter of history, taste,
system limitations, and so on. Database designers tend to get really passionate about naming
conventions.

| like the predicate-and-propositions approach to the meaning of relations. For example,

| am repeating the proposition | already mentioned: “The employee with ID number 17 is
named Fernando, works in department D1, and was hired on July 19th, 2003.” | suggest
that you should always be able to re-create the predicates and the propositions. A tuple
that represents this proposition is written in a relation with values only, like (17, Fernando,
D1, 2003-07-19). It is easy to recreate this proposition if its predicate, i.e. table structure,
has meaningful names for table itself and for columns, like Employees(Employeeld,
EmployeeName, Departmentld, HireDate). However, if the table and the columns would
be named Tablel(columnl, column2, column3, column4). In short, you should be able to
read your database. This makes it simpler to determine whether your database serves your
business problem well and whether your data is in accordance with business rules. It also
makes it much simpler to familiarize a new programmer with the database design and makes
the task of data interchange with other systems easier.

The only naming convention | really do not like for a relational database is the one called
Hungarian notation, in which you use prefixes to denote object types. Hungarian notation
uses names like tblIEmployees for an employee table and vwCustomerOrders for a customer
orders view; such names contradict the principle of interchangeability, which is one of the
most important principles in the relational model.

The Relational Model: A Quick Summary

The relational model is background independent, which means it does not depend on any
specific presumption. | will return to this fact multiple times. To begin, let me state explicitly
that the relational model is not type dependent. There are no prescribed “relational” types,
and there are no “beyond relational” types. The relational model allows any type at all.

In fact, it is completely valid to define a relation with a single attribute of a quite complex
type; this would be a typed relation. However, system-supplied types are usually easier to use
because database developers already know how to use them and, of course, don't have to
develop them from scratch.

90 Inside Microsoft SQL Server 2008: T-SQL Querying

To summarize, the relational model consists of the following components:

B An open-ended collection of scalar types

B A way to define types—in other words, a type generator

B A way to define relation types—in other words, a relation type generator
B A way to generate relational variables and assign values (sets) to them

B Relational algebra: an open-ended collection of relational operators

Tables represent relations, and all information in a relational database is stored in tables.
A relation represents an entity from the real world. In addition, tuples of a relation represent
propositions, and a relation header represents a predicate.

The relational model is not dependent on naming conventions, either. Again, it is background
independent. This means it is your responsibility to use a naming convention descriptive
enough to make it possible to re-create predicates and propositions from your database.

Relational Algebra and Relational Calculus

To manipulate relations (relational variables), you need some operators. Relations and operators
on relations form what is called relational algebra. The collection of relational operators is open
ended, but some operators are considered basic. Although the basic operators are somewhat
intuitive, I'll introduce them for the sake of completeness.

Basic Operators

As for simple types, we need at least two operators on relation types: one to store a set
of tuples in a relational variable and one to retrieve a variable's value. These correspond
to the familiar notions of assignment and evaluation. The relational selector operator
(corresponding to evaluation) returns a table from a relational variable, and the relational
assignment operator assigns a table value to a relational variable.

A set of basic Boolean operators on relations and tuples is obviously needed as well:
B =(equals)
B =+ (not equals)
B C (subset of)
B D (superset of)

B < (element of)

=@ (is empty)

Chapter 3 The Relational Model 91

The first four operators listed here accept two relations as parameters. The fifth one checks
whether a tuple is a member of a relation—in other words, it accepts a tuple as the left
parameter and a relation as the right parameter. Finally, the last operator in the list accepts
a single relation as a parameter and checks whether it is empty. If you wish, you can define
additional operators for convenience, such as proper subset of (to mean subset of and not
equal to) and proper superset of (superset of and not equal to). | want to mention one other
specific operator that helps greatly with the tabular presentation of a relation—the Order By
<attribute_1,attribute_2,...,attribute_n> operator.

The Order By operator does not return an unordered result; thus, it does not return a set or
relation, which are unordered. You can think of the return value of the Order By operator

as a sorted table. Sorting is not predefined for relations and tuples, however; therefore,
supporting the Order By operator for a particular relation requires that at least one attribute
of the relation support ordering and the following operators:

B > (greater than)
B > (greater than or equal to)
B < (less than or equal to)

m < (less than)

The table returned by the Order By operator is sorted according to values of one or more
attributes, all of which must be of data types that support the listed type operators.

Relational Algebra

Relational algebra is a collection of operators that accept relations as input parameters and
return relations. The fact that the result of any relational operation is a relation is referred
as the relational closure property of the relational algebra. Codd originally defined eight
relational operators—four of them are based on traditional set operators, and four of them
are special relational operators. These eight are Restrict, Project, Product, Union, Intersect,
Minus, Join, and Divide.

Relational algebra is not closed; you can define additional operators as long as they respect
the relational closure property. I'll introduce a handful of useful operators in addition to
Codd's original eight. Of course, because the collection of relational operators is open ended,
my list is not complete. | deliberately selected the operators that | find most useful and that
are used in the Transact-SQL language later in this book.

Codd's Eight Original Operators

The Restrict operator filters tuples of a relation. The result of this operator is a relation with
fewer tuples than (or the same number as) the original relation. The heading type of the
relation returned is the same as the heading type of the original relation. The restriction

92

Inside Microsoft SQL Server 2008: T-SQL Querying

is based on a Boolean expression (called the restriction expression) comparing values of
attributes to literals, variables, other attributes, or expressions. The Restrict operator's output
relation contains exactly those tuples from the original relation for which the restriction
expression evaluates to True.

The Restrict operator filters a relation horizontally; in contrast, the Project operator filters a
relation vertically. The Project operator is much simpler: in addition to a relation, the Project
operator takes, as input, a list of attributes needed for the resulting relation. Note that the
proper projection should include unique tuples only; otherwise, the result is not a relation.
Nevertheless, RDBMS do not enforce this rule because it is more practical to allow a multiset
(or a bag) as the result to send it directly to a client application or to store it temporarily.

Figure 3-1 shows the Restrict and the Project operators graphically. Imagine that the right
rectangle showing the Project operator represents the relation Employees, with attributes ID,
Name, HireDate, DepartmentID, and BirthDate. The Project operator returns a relation with
ID, HireDate, and DepartmentID as its attributes, and these attributes are indicated by the
darker shading in the figure.

Restrict Project

———

FIGURE 3-1 The Restrict and Project operators

The Product operator is based on the Cartesian product from mathematics. You already
know from Chapter 2 that the Cartesian product of two sets is a set of ordered pairs (x,y),
where x comes from the first set and y from the second set. However, in the relational model,
tuples are not ordered, and the Product operator should respect the relational closure
property and return a set of unordered tuples, not a set of ordered pairs. Thus, in relational
algebra, the Product operator is generalized. Instead of returning ordered pairs (x,y) of
tuples (where x is a tuple from the first input to Product and y a tuple from the second), the
Product operator returns tuples that are the union of the original two tuples. Union is used
here in its set theory sense—it means that the final tuple has as its attributes the union of the
attributes of the two original tuples. Union of course means distinct union, and therefore, if
an attribute appears in both input relations, only one occurrence is preserved in the output

Chapter 3 The Relational Model 93

of the Product operator. What happens if the two original relations include an attribute with
the same name and you want to preserve both of them? Clearly, the Product operator is not
complete; we need an additional operator that allows the renaming of an attribute. Such

an operator is not a part of Codd'’s original algebra, so | will introduce after this section that
deals with the original eight operators.

The Union relational operator is based on the set Union operator. However, the relational
Union operator again differs from its mathematical counterpart because of the closure
property of relational algebra. Because the result must be a relation and a relation can have
tuples of only one heading type, the relational union must either be restricted to input
relations of the same type or implicitly project each input relation onto the attributes that
are common to both input relations. Figure 3-2 shows the Product and the Union operators.
For the Union operator, a projection on each of the two relations is used to limit the union to
attributes that the relations have in common only. The result of Union has the same heading
type as both inputs (or their projections onto the common attributes) and contains distinct
tuples.

Product Union
a X alx
b y aly
C b | x

FIGURE 3-2 The Product and Union operators

The relational Intersect operator is, analogously to the relational Union operator, based
on the set theory Intersect operator, and like Union has the restriction that the operands
(relations) be of the same type or that an implicit projection is preapplied to the operands.
The result is the set of distinct tuples that appear in both input relations (or in their
projections onto the common attributes).

Another relational operator, the Minus (or Difference) operator, is based on the equivalent
operator of set theory, again with an understood projection to make the operands have the

94

Inside Microsoft SQL Server 2008: T-SQL Querying

same type. The result of the relational Minus operator is a relation that includes only tuples
from the left operand that do not appear in the right operand. Figure 3-3 shows the Intersect
and the Minus operators.

Intersect Minus

FIGURE 3-3 The Intersect and Minus operators

There are many varieties of the Join relational operator; however, the most important one

is the Natural Join operator, which is illustrated in Figure 3-4. The Natural Join needs two
relations with at least one attribute in common; the result is a relation with tuples for which
the attributes in common have equal values. These common attributes come from only one
of the joined relations and with the union of other attributes from both relations. Union is
here again used in set theory sense, meaning a union of distinct attributes from the original
relations. Like the Product operator, the Join operator would be much more useful with

an operator that would allow renaming an attribute. As mentioned, Figure 3-4 shows the
Natural Join operator. Imagine that the left input relation is the Employees relation with
employee ID number and Department ID number attributes and that the right input relation
is the Departments relation with Department ID number and Department Name attributes.
The Natural Join operator uses the Department ID number common attribute to match the
employees with their departments based on equality of the Department ID number. Note
that in the resulting relation, the Department ID number appears only once. In addition, the
result contains only tuples arising from a match based on Department ID numbers in both
input relations. Finally, also note that a single department (y2 in Figure 3-4) is matched with
more than one employee.

Not all joins are natural joins, and not all joins are based on the equality operator. General
joins (joins that don't necessarily use the equality operator as the matching condition for
tuples) are called © (theta) joins. If the operator for matching tuples is the equality operator,
then the join is called equi-join. A natural join is just a special case of equi-join.

Chapter 3 The Relational Model 95

— Natural Join —1
x1 | y1 yl | z1 x1 | y1 | z1
x2 | y2 y2 | z2 x2 | y2 | 2
x3 | y3 y3 | z3 x3 | y3 | z3
y4 z4

FIGURE 3-4 The Natural Join operator

Probably the most poorly understood relational operator is the Divide operator. A divisor
relation is used to partition a dividend relation and produce a quotient relation. The quotient
relation is made up of those values of one column from the dividend table for which the
second column contains all of the values in the divisor.

Although this is a theoretical chapter, | am going to use code to explain the Divide operator
and a problem you can meet if you divide with an empty set, a zero divide problem. I'll use

an example that you saw in Chapter 2 and that you'll see again in Chapter 6. The problem,
which refers to the InsideTSQL2008 database, asks you to return all customers for whom every
employee from the USA has handled at least one order. In this case, you divide the set of all
orders by the set of all employees from the USA, and you expect the set of matching customers
back. T-SQL has no Divide operator. To show the problem, I'll rephrase the problem as it
appears in Chapter 6:

Return customers
for whom you cannot find
any employee
from the USA
for whom you cannot find
any order
placed for the subject customer
and by the subject employee

The query for this problem is quite intuitive:

USE InsideTSQL2008;

SELECT custid FROM Sales.Customers AS C
WHERE NOT EXISTS
(SELECT * FROM HR.Employees AS E
WHERE country = N'USA'
AND NOT EXISTS
(SELECT * FROM Sales.Orders AS O
WHERE O.custid = C.custid
AND O.empid = E.empid));

This query returns 23 rows, which means there are 23 customers for whom every employee
from the USA has handled at least one order. Let's ask the same question with a different

96

Inside Microsoft SQL Server 2008: T-SQL Querying

country: How many customers are there for whom every employee from Israel has handled
at least one order? Here is the same query with one changed parameter:

SELECT custid FROM Sales.Customers AS C
WHERE NOT EXISTS
(SELECT * FROM HR.Employees AS E
WHERE country = N'IL'
AND NOT EXISTS
(SELECT * FROM Sales.Orders AS O
WHERE O.custid = C.custid
AND O.empid = E.empid));

This query returns 91 rows, representing all customers. This might not be the result you
expected, given that there are no employees from Israel in the HR.Employees table. This is
the way the Divide operator was defined originally. Because the HR.Employees table has no
employee from Israel, the condition that a customer was served by all employees from Israel
is true for every customer (it is vacuously true). In other words, every customer was served
by every employee from Israel. However, something else is also true: every customer was
served by no employees from Israel. Note that there is no preferred truth here; the one you
take depends on the problem you are solving. Do we have something like Russell's Paradox
here (which you remember from Chapter 2)? Not really. The problem is that we did not
think through the possibility of having no employees from Israel. If the original question’s
“customers ... for whom ... at least one order” was intended to mean there were in fact some
orders, we can answer the question by simply adding a condition to the predicate requiring
to return customers served by all employees from Israel if there is at least one employee
from Israel:

Return customers
for whom you cannot find
any employee
from Israel
for whom you cannot find
any order
placed for the subject customer
and by the subject employee
if there is at Teast one employee from Israel

The query now looks like this:

SELECT custid FROM Sales.Customers AS C
WHERE
NOT EXISTS
(SELECT * FROM HR.Employees AS E
WHERE country = N'IL'
AND NOT EXISTS
(SELECT * FROM Sales.Orders AS O
WHERE O.custid = C.custid
AND O.empid = E.empid))
AND EXISTS
(SELECT * FROM HR.EmpTloyees AS E
WHERE country = N'IL');

Chapter 3 The Relational Model 97

This query returns zero rows, as you might have expected when you originally posed the
question. The formula for the Divide operator includes three relations:

a Divide By b Per c,

where a is the dividend, b is the divisor, and c is the mediator relation. Let relation a have
attributes A and relation b attributes B. The Divide operator returns a relation that includes
of all tuples from divisor such that a tuple {A, B} appears in the mediator relation for all tuples
from divisor relation. In the examples | have shown, the dividend is the Customers relation,
the divisor is the relation that includes employees from a specific country (USA or Israel on
examples), and the mediator is the Orders relation. However, in order to avoid the zero divide
problem, | used a fourth temporary relation (SELECT * FROM HR.Employees AS E WHERE
country = N'IL). You can express the predicate requiring to return customers served by all
employees from the USA if there is at least one employee from the USA in yet another way,
that is, by finding distinct customers (represented with custid) from orders served by employees
from the USA having the number of distinct USA employees that served a customer equal to
the total number of employees from the USA (again, as you'll find in Chapter 6):

SELECT custid

FROM Sales.Orders

WHERE empid IN
(SELECT empid FROM HR.EmpToyees
WHERE country = N'USA")

GROUP BY custid

HAVING COUNT(DISTINCT empid) =
(SELECT COUNT(*) FROM HR.Employees
WHERE country = N'USA');

This query returns the result for the second version of the division for both USA and Israel
employees and is also much shorter. To conclude the eight original relational algebra
operators, Figure 3-5 shows the extended Divide operator (with mediator relation)
graphically.

Divide
1
a a|Xx X
b aly z
C alz
b | x
b|z

FIGURE 3-5 The extended Divide operator

98

Inside Microsoft SQL Server 2008: T-SQL Querying

Additional Relational Algebra Operators

As | already stated, relational algebra has an open-ended set of operators; I'm focusing on
some of the most useful ones.

| already pointed out how the Rename operator is useful. Without it, any nonunary
operators—operators that accept more than one relation as parameters—would be very
limited. The Rename operator assigns an alias to an attribute or to a relation in a query. Note
that it is practical to have aliases for relations as well as for attributes because a single query
can refer to the same relation more than once.

A language that supports relational algebra is said to be relationally complete; however, this
doesn't mean that it is computationally complete as well. | haven't yet introduced an operator
that would return a computed attribute in the resulting relation. The Extend operator is the
operator that adds a named expression (which evaluates to a scalar value) to the resulting
relation. Note that this expression is not limited to computations between attributes of a
single tuple only; the expression can also work on multiple tuples if it aggregates multiple
input values to a single output value. Figure 3-6 shows the Rename and the Extend
operators, with aliased and added attributes in darker color with pattern.

— Rename —— Extend
A B A C
x1 | yl x1 | yl
x1 | y2 x1 | y2
x2 | yl x2 | yl

FIGURE 3-6 The Rename and Extend operators

The Extend operator does horizontal, or tuple-wise, computations. We need an operator
for vertical, or attribute-wise, computations as well. The operator that does vertical
computations is the Summarize operator (shown in Figure 3-7); it combines a projection on
attributes over which the vertical computation is made with an extension of the resulting
relation to include aggregate computations.

Semi joins are joins that return tuples from one relation based on the existence of related
tuples in the other relation. A left Semijoin operator (shown in Figure 3-8) returns tuples from
the left relation, and a right Semijoin operator returns tuples from the right relation.

l—» Summarize —1

x1

x1

X2

X2

yl | z1
y2 | z2
yl | z3
y2 | z4

FIGURE 3-7 The Summarize operator

x1

X2

f (z1,22)

f (z3,z4)

Semijoin
x1 | y1 yl | z1 x1 | yl
X2 | y2 y2 | z2 X2 | y2
x3 | y3 y3 | z3 x3 | y3
x4 y4

FIGURE 3-8 The (left) Semijoin operator

Graph theory is one of the most powerful theories in mathematics. It was developed by

Chapter 3 The Relational Model

929

Leonhard Euler when he was studying a famous historical mathematical problem called The

Seven Bridges of Konigsberg. Here's a short description of the problem from Wikipedia:

In graph theory, a graph is a set of items (called nodes or vertices) and connections (called
edges) between pairs of items. The nodes are abstract static items, and the edges can
represent associations or relationships between nodes. A road system, for example, can be
represented with a graph: cities are nodes, and roads are edges. Trees and hierarchies are
special cases of graphs. In a relation, we commonly model a graph with the adjacency list
model. In this model, we consider the graph's edges as directed edges from one vertex to

The city of K6nigsberg in Prussia (now Kaliningrad, Russia) was set on both sides of
the Pregel River, and included two large islands which were connected to each other

and the mainland by seven bridges.

The problem was to find a walk through the city that would cross each bridge once

and only once.

another, and we represent these directed edges as tuples. The nodes connected by an edge

(which can be viewed as adjacent by virtue of the edge connecting them) are represented

by attributes of the edge tuple. Only nodes with a connection are represented. The problem
with the adjacency list model comes when you have to query it. For example, if you need to
find all possible paths from city A to city B in the road system, your query must involve some

kind of loop. (The loop can be hidden in a recursive common table expression, but it's still
a loop.) To make such queries faster and simpler, we can use a new relational operator, the

100

Inside Microsoft SQL Server 2008: T-SQL Querying

TClose operator. This unary operator returns the transitive closure of the original relation. The
result is a relation with the same heading type as the original relation, but it includes tuples
for all pairs of nodes with unbroken paths between them. Querying such a resulting relation
is much simpler. You'll learn more about graphs, trees, hierarchies, and also how to compute
the transitive closure of a graph in Chapter 12, “Graphs, Trees, Hierarchies, and Recursive
Queries.” For now, just look at the graphical representation of the operator in Figure 3-9.

—>TCIose1
() alc alc
b|c b|c

©
O—O
/

FIGURE 3-9 The (left) TClose operator

For the sake of completeness, I'll add two more well-known operators that deal with relations
with temporal data: Unpack and Pack. Although this book does not deal with temporal
problems, many books do, such as Inside Microsoft SQL Server 2008: T-SQL Programming by
Itzik Ben-gan et al. (Microsoft Press, 2009).

Imagine that each tuple in a relation has an attribute representing the time interval for which
the tuple is valid. Pretend that you have a time-interval type in your type collection, either
system defined or user defined. A tuple with such a validity interval might look like this:

{A, d4:d6}
Without explicitly defining the header of this tuple, let’s say the proposition here says that
supplier A is under contract (is a valid supplier) during the period from the point in time d4 to

the point in time d6 and that points in time are discrete: d1, d2, d3, and so on, like calendar
days, for example. You could also have additional tuples for the same supplier, like so:

{A, d5:d7}

{A, d8:d8}

Chapter 3 The Relational Model 101

Here, the three tuples for supplier A have overlapping and abutting validity intervals. How
can you find the number of distinct time points supplier A was under a contract? How

can you combine tuples with adjacent and overlapping intervals into a single tuple that
represents that supplier A was under contract continuously for one longer interval without
interruptions?

Let's define the Unpack operator as a unary relational operator that returns a relation with
all distinct valid time points projected over a set of input operators, the way the Summarize
operator projects over input attributes. However, Unpack is doing the opposite of Summarize
in terms of tuples returned; the relation returned is exploded to include tuples for all distinct
valid time points. In the case of propositions from the example, the only input attribute for
which time points can be unpacked is the supplier. The Pack operator does the opposite: it
returns a relation with input attributes for which intervals are packed and intervals that are

a union of all intervals from the source tuples for the same input attributes that overlap or
meet. Note that union here is not a relational Union operator; it is an interval union, defined
only for intervals that overlap or meet. Figure 3-10 shows the Unpack and Pack operators
graphically.

Unpack Pack

a|l d4:de6 a d!l:d4 a|l d4:de6 a d!l:d?,
a|l d5:d7 a d5:d5 al d5:d7 bl d2:d4
a|l d8:d8 a dé: d6 a|l d8:d8 bl d7:d7
b| d2:d4 a d7:d7 b| d2:d4
b| d7:d7 a d8:ds8 b| d7:d7

b| d2:d2

b| d3:d3

b| d4:d4

b| d7:d7

FIGURE 3-10 The Unpack and Pack operators

Primitive Relational Algebra Operators

Maybe you've already noticed that many of the relational operators defined so far can be
expressed with other relational operators. In fact, most of the operators mentioned so far
are just shortcuts that make relational expressions simpler and shorter. In fact, even Codd's

102

Inside Microsoft SQL Server 2008: T-SQL Querying

original eight operators are not all primitive; some can be expressed with others. An RDBMS
Query Optimizer component can utilize this fact when optimizing a query; it can rewrite a
query to its logical equivalent using different operators, which might be implemented with
faster physical operators than other relational operators in a specific RDBMS. For example,
you might notice that sometimes SQL Server uses the Merge Join physical operator when you
use the Union logical (relational) operator.

Note also that the relational operators that are based on set operators differ from the
original set operators.

Relational Calculus

Relational algebra provides an open-ended set of relational operators. You use them to
construct the desired relation that results from a query; you are prescribing a system of
how to get the resulting relation. Relational algebra is prescriptive. Relational calculus is an
alternative way to obtain a desired resulting relation from a system. With relational calculus,
you describe the resulting relation. Therefore, relational calculus is descriptive.

How do you describe the resulting relation you need? Once again we use predicates. You
describe the resulting relation with a constrained predicate. For example, when | described
the Divide relational operator, | tacitly used relational calculus to introduce the problem:
Return all customers for whom every employee from the USA has handled at least one order.
The more detailed description is the following:

Return customers
for whom you cannot find
any employee
from the USA
for whom you cannot find
any order
placed for the subject customer
and by the subject employee

Relational calculus exists in two flavors: tuple calculus and domain calculus. In tuple calculus, you
specify a query'’s result by describing tuple membership conditions for the resulting relation. In
domain calculus, you specify the resulting relation by constraining the domains of attributes.
Although there is a strict mathematical difference between tuple calculus and domain calculus,
for the purposes of this book we can treat that difference as a nuance. The difference was
important in the past because different languages—languages that were serious competitors to
SQL—evolved based on tuple and domain calculus. For tuple calculus, QUEL (Query Language)
was developed; domain calculus was supported by QBE (Query by Example) language.

To explain the difference between relational algebra and relational calculus, let me give

an example. Imagine two relations: Customers with attributes Customerld, CustomerName,
and City and Orders with attributes Orderld, Customerld, and OrderDate. The query you are
solving is “Get the Customerld and CustomerName attribute values of the distinct customers

Chapter 3 The Relational Model 103

from Paris that have placed at least one order.” A prescriptive, algebraic formulation of the
query could be the following:

1. Join Customers and Orders over Customerld.

2. Restrict the result to tuples for City Paris.

3. Summarize the result over Customerld and CustomerName to get distinct customers.
4. Project the result over Customerld and CustomerName.

A descriptive, calculus formulation of the query would be the following:
Return Customerld and CustomerName for customers from Paris for which exists some order.

The description of a query'’s result is very similar in tuple and domain calculus. In both cases,
it includes a description of the resulting header (also called a proto-tuple) and a description
of constraints in terms of a predicate that uses a quantified expression. In the example,
Customerld and CustomerName define the proto-tuple, the header of the resulting relation.
The predicate in the example uses an existentially quantified statement “for customers from
Paris for which exists some order.” The word exists indicates quantification. You create the
predicate by combining logical expressions using the standard logical operators = (Not), A
(And), and Vv (Or). In addition, quantified expressions are necessary for relational calculus.
Therefore, the existential quantifier 3 (Exists) and the universal quantifier ¥V (For all) are an
indispensable part of relational calculus.

SQL allows you to express the desired result of a query in nearly human language. It supports
both logical operators and quantifiers. Itzik has pointed out many times in this book that
some problems are easier to solve when rephrased with a different predicate or are analyzed
using reverse logic. Now you can see that what this often means is that you are actually using
relational calculus.

Relational calculus and relational algebra are equivalent; they both have the same expressivity.
Therefore, it is really up to you to select the most suitable way for expressing the desired resulting
relation; how you express a query (using relational algebra or relational calculus) and how you
understand the meaning of a relation (entity or predicate and propositions) are similar.

T-SQL Support

I mentioned that SQL is not the only language used for manipulating relations. In fact, the
relational model is not language dependent; this is another aspect of background independence
of the relational model. SQL is just one possible language. However, there is an existing ANSI
standard for SQL. And while it's not perfect, SQL is the most widely used contemporary language
for manipulating relations. Transact-SQL (T-SQL) is SQL Server's dialect of standard SQL.

T-SQL supports most of the operators of relational algebra. You manipulate relations with
Data Manipulation Language (DML) statements, namely, SELECT, INSERT, UPDATE, DELETE,
and MERGE. The Product operator is expressed with CROSS JOIN. The Restrict operator

104

Inside Microsoft SQL Server 2008: T-SQL Querying

is supported in the WHERE and HAVING clauses and implicitly in the ON clause of a JOIN
operation if the join is not a CROSS JOIN, as other joins filter the result of a CROSS JOIN. The
Project operator is supported in the SELECT part of a query, where you list attributes explicitly.
The Union, Intersect, and Minus relational operators have counterparts in the T-SQL UNION,
INTERSECT, and EXCEPT operators. All kinds of Join operators—theta joins, equi-joins, semi
joins, and natural joins—are supported with the JOIN operator. The Rename operator is
expressed in T-SQL with the AS clause, which can appear in a query’s SELECT list for renaming
attributes and in a query’'s FROM part for renaming relations. The Extend operator is expressed
in the SELECT list, which can include named calculated expressions in addition to original
attributes. The Summarize operator translates to the T-SQL GROUP BY clause. The Divide,
TClose, Unpack, and Pack relational operators have no directly equivalent T-SQL operators.

Relational calculus is supported by the SELECT part of a query, where you describe the
proto-tuple, and in the WHERE and HAVING clauses, where you constrain the resulting
relation with a predicate. Of course, T-SQL supports all standard logical operators: — (Not), A
(And), and Vv (Or) and both the existential quantifier 3 (Exists) and the universal quantifier V
(For all) in expressions that constrain the resulting relation.

Given all of this information, we can say that T-SQL is relationally complete.

Data Integrity

| already mentioned that data integrity is crucial for a relational database. Actually, data
integrity rules are an important part of a relational database. An RDBMS has to enforce the
rules. By making the rules part of a database, you inform the system what those rules are.
With declarative constraints, how they are enforced is up to the system; with procedural
code, you define how to implement them. In both cases, you express constraints in terms of
predicates.

Relation headers—pbhysical table and view definitions including attribute type definitions,
together with declarative and procedural constraints—form a database schema. Now we can
summarize what exactly a database schema is. A database schema represents constrained
predicates that describe a business scenario. You can get the constrained predicates from
relation headers and constraints defined in the database. A database predicate can be
defined as an aggregation of all relation and constraint predicates. Data integrity rules can
be expressed with a single rule: there must be no value in a database at any time that would
violate its constrained predicate.

Constraints can be classified into basic constraints that define entity, referential, and domain
integrity and business rules. Basic integrity rules are expressible with declarative constraints.
Most business rules need programmatic code in SQL Server. Business rules can be anything,
such as cardinality or frequency rules (how many tuples can exist in a relation at any time),

data derivation rules (how you calculate state from events), subset rules (a relation can have

Chapter 3 The Relational Model 105

a subset of tuples from another relation only), inclusion rules (a period when a supplier has
supplied a product must be included in a period when the supplier had valid contract),
process rules (which event should happen first), and much more. It is up to the database and
application designer to decide where to implement the rules. | strongly advocate having at
least declarative constraints in your relational database. After all, if you do not use them, why
do you use an RDBMS?

Constraints can be classified in other ways as well. For example, they can be classified
according to which kind of object they constrain: type, attribute, relation, and database
constraints. They can also be classified as immediate or deferred, based on when they are
enforced: immediately or at the end of the current transaction. Note that according to the
rule that “there must be no value in a database at any time that would violate its constrained
predicate,” only immediate constraints should work inside a relational database. This means
that constraints must be enforced at a single DML statement boundary, not at the end of

a transaction or even later. A single DML statement is treated in an RDBMS as an atomic
operation even if it modifies multiple rows; therefore, during the statement execution you
could get rows that violate some constraint but never after the statement is finished. Note
that immediate constraints only cannot guarantee that a database would reflect a valid state
of affairs in real-world environment at all times. For example, although transferring money
from one account to another is intended as an atomic operation, it involves two updates in
a database. Both updates must finish successfully, or none should be performed. Therefore,
we clearly need some other means to make databases consistent with the real world at any
time. This can be done with transactions. A transaction is a logical unit of work that extends
a statement-level notion of atomicity. Although transactions play an important role in an
RDBMS, | am not going to explain them more in detail here; to learn more about them,
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming.

ANSI standard SQL allows deferred constraints. SQL Server does not implement them.
However, they can be implemented in procedural code for advanced checks and searches
for incorrect data. Correctness is a stricter term than consistency; an RDBMS can enforce data
consistency but not correctness. Consistency means that data is in accordance with business
rules declared and known to the system; correctness is defined outside the system by users
of the system.

Declarative Constraints

Because declarative constraints are the most important way of implementing business rules
in a relational database, I'll discuss them in more detail than other constraints.

Entity Integrity

Tables in a database are physical representation of relations, and the rows of a table represent
tuples; relations consist of unique tuples. This is what entity integrity is about—uniquely

106

Inside Microsoft SQL Server 2008: T-SQL Querying

identifying rows in a table. You must have a combination of columns (which physically
represent attributes) that uniquely identify a row. The minimal set of columns that still uniquely
identify each row is called a key. Each table can have multiple unique column combinations—
in other words, multiple candidate keys. It is up to you to select one of them as your primary
reference for each row and call it the primary key. SQL Server has two constraints for entity
integrity: the Unique constraint for candidate keys and the Primary Key constraint for primary
keys. You can have multiple Unique constraints and one Primary Key constraint per table.

You know that every table should have a key. You also know that SQL Server does not
enforce this; you can create a table without a Primary Key or Unique constraint. The reason
for this is purely practical. Imagine you need to import data from a text file. If you had a key
defined, you would have to cleanse the data in your text file before the import. Cleansing
text files is much less practical than cleansing data in a SQL Server table. Nevertheless, in
production, all your tables should have a key defined for each table.

Each key has two required and two desired properties (D. Sarka, 2008). Uniqueness and
applicability are required; stability and minimality are desired. Uniqueness means the key
identifies each tuple uniquely. Applicability means the key has to be applicable for all tuples
in a relation, it has to be known, and it should not consist of attributes that are meaningless
for some tuples. (See the section “Generalization and Specialization” later in this chapter)
Stability means the key should not change, if possible. Minimality means the key should
consist of the fewest columns possible and the fewest bytes possible. Nevertheless, because
of physical problems, you should search for keys with all four properties. To track changes
for an entity over time, such as in data warehousing scenarios, stability becomes a necessary
property. And minimal keys provide the best performance.

There is an old debate about keys and which are better: natural or surrogate. A natural key is
a subset of the attributes that define an entity. A surrogate key is a key the designer creates
and adds to the attributes of an entity; typically it is a sequential number. Personally, | avoid
participating in this old debate. You cannot strictly distinguish between natural and surrogate
keys. Is a Social Security ID (SSID) a natural or surrogate key? Somebody could add it to the
attributes of Person entity. Let me try to express a definition of a natural key: a key is natural
if the attribute it represents is used for identification independently of the database. If you
have something unique, applicable, stable, and short in your table, use it. If you don’t, add

a sequential number for the primary reference, and you will have all required and desired
properties for your primary key.

If a key is applicable, its values must be known. SQL Server enforces this rule by prohibiting
columns that allow NULLs from participating in Primary Key constraints; however, it allows
nullable columns in Unique constraints. I'll come back to NULL, which is the marker for
something unknown, later in this chapter. For now, I'll simply advise you not to use nullable
columns for keys.

Chapter 3 The Relational Model 107

Referential Integrity

A foreign key is a set of columns whose values match some key of another table—in other words,
a copy of a key from another relation. Foreign keys denote associations between relations; they
are the glue that keeps relations in a database together. The rule foreign keys enforce can be
expressed briefly: There must be no unmatched foreign keys in a database at any time. Foreign
keys maintain references between relations—in other words, they enforce referential integrity.

The foreign key rule can be maintained during update and delete operations in different ways.
In SQL Server, four possibilities exist for enforcing the foreign key rule, and each possibility
consists of two pairs of rules. One pair of rules deals with the primary (parent) table, and one
pair deals with the secondary (child) table. The pair of rules for the child table is immutable;
the rules are always the same for all four possibilities of implementing a foreign key:

B You cannot insert a row in the child table if it has no related row in the parent table.

B You cannot update the foreign key columns in the child table in a way that would leave
them without a related row in the parent table.

The two rules for the parent table differ with each of the four possible implementations. The
four standard possibilities and the implementation of the two rules for the parent table are
the following:

B No Action implementation
0 You cannot delete a row in the parent table if it has related rows in the child table.

O You cannot update the key columns in the parent table if they have related rows
in the child table that would become orphaned.

B Cascade implementation

0 If you delete a row in the parent table, you have to delete all related rows in the
child table.

0 If you update a primary key in the parent table, you have to update foreign keys
in all related child tables to the same new value.

® Set Null implementation

0 If you delete a row in the parent table, you have to set to unknown (NULL) all
foreign keys of related rows in the child table.

0 If you update a primary key in the parent table, you have to set to unknown
(NULL) all foreign keys of related rows in the child table.

B Set Default implementation

0 If you delete a row in the parent table, you have to set to a predefined default
value all foreign keys of related rows in the child table.

0 If you update a primary key in the parent table, you have to set to a predefined
default value all foreign keys of related rows in the child table.

108

Inside Microsoft SQL Server 2008: T-SQL Querying

In short, whatever you do, never leave rows in the child table orphaned. You would normally
use the No Action implementation. You should use the Cascade implementation for deletes
only in case you want to implement a strong relationship between the parent and the

child table. In such a relationship the child table rows make no sense without parent rows.

A classical example is orders and order line items: order line items cannot exist without an
order. If you delete an order, you should delete all of its line items as well. | do not like to use
Cascade updates. Cascade updates indicate that your key in the parent table is not stable,
and stability is one of the desired properties of a key. The Set Null and Set Default rules

are useful for maintaining history of the child table; for example, an order with unknown
customer gives you information that something was ordered and when it was ordered

but not who ordered it. Nevertheless, today history is commonly maintained in a data
warehouse, and you usually do not need these rules.

A foreign key constraint must reference a key in the parent table. The parent table can be
the same as the child table; a foreign key can refer to the table itself. This is how you can
represent graphs, trees, and hierarchies using the adjacency list model.

Domain Integrity

Domain integrity limits the domain of possible values of an attribute. Of course, an attribute’s
type already constrains the possible values of the attribute. Another standard way to limit the
domain of an attribute in a relational database is with a check constraint.

A check constraint is a logical expression that returns true, false, or unknown—it is another
predicate. An RDBMS enforces it whenever a tuple is inserted or updated. The tuple's
attribute values replace the predicate’s parameters, making the predicate a proposition.

A tuple is rejected if the proposition evaluates to false. The syntax of a check constraint
expression is similar to the syntax of expressions in a WHERE clause.

Check constraints can be as simple as checking a range of values. However, what do you do
when you don’t know the allowed range in advance—when you have to maintain the values
to the allowed range dynamically? What do you do when the list of possible values is very
long or even infinite? A check constraint expression would consist of an enormous list of
values connected with logical OR operators, and you would have to change the constraint
whenever the list of possible values changed. In such a case, it's simpler to use lookup tables.
You connect the attribute(s) you are constraining to a lookup table with a foreign key.
Therefore, foreign key constraints can serve as domain integrity mechanisms as well.

All the constraints I've mentioned—keys, foreign keys, and check constraints—play an
important role in query optimization. They give information to an RDBMS, and this helps
find an optimal execution plan. Keys give information that you're searching for a single value;
this value is unique. Therefore, the search is very narrow, and the system can use an index
seek. Foreign keys give information that a parent row always exists, which helps to find the
most efficient join algorithm. Check constraints give information about range, which means
(for example) that searching for a value that is out of range returns zero rows, and the system

Chapter 3 The Relational Model 109

doesn't even have to read the data to return the correct result set. You'll learn more about
query tuning in Chapter 4, “Query Tuning.”

Other Means of Enforcing Integrity

As I've already mentioned, explicit constraints are not the only means of enforcing data
integrity. Data types are constraints as well; they constrain with type-defined constraints and
with sets of operations allowed. An attribute is constrained with its data type. You can also
define whether a column of a table allows NULLs. Finally, the definitions of tables constrain
as well: if you don't have a place to insert a value, you cannot insert it. | will explain this a bit
more in the normalization section of this chapter.

You cannot implement all business rules by using declarative means. Some constraints are
too complex, and some span a database boundary. A foreign key, for example, is limited

to associating tables in the same database only. Some constraints have to be implemented
programmatically. You can put your constraining code in a client application, in the middle
tier, in the data access layer, in stored procedures in a database, or anywhere you have some
code. However, if you want your RDBMS to enforce complex constraints automatically, you
have to use triggers.

Triggers are special stored procedures that an RDBMS executes, or fires, automatically. You
can use Data Modification Language (DML) triggers to enforce data modification rules and
Data Definition Language (DDL) triggers to enforce schema modification rules. Triggers can
fire before or after the statement that is modifying the state of a database. SQL Server 2008
supports two kinds of DML triggers: INSTEAD OF and AFTER triggers; only one kind of DDL
trigger is supported: the AFTER. INSTEAD OF triggers are not actually ANSI-standard BEFORE
triggers; they do fire before the statement, but they also intercept the statement, and then
you can do whatever you want in the body of the trigger. If you want the statement to
execute, you have to write it explicitly in the body of the trigger.

In theory, you should always be able to use a view instead of a base relation. However, not all
views are updatable. For example, a view can summarize some attributes of a base table; an
RDBMS doesn’t know how to distribute a value from a single row from a view over multiple
base rows. INSTEAD OF triggers are especially meant for making views updatable.

SQL Server 2008 also has a built-in XML system type. The XML type enforces some integrity
rules by itself: it allows well-formed XML only. In addition, you can validate XML values
against a predefined schema from a schema collection you create inside a SQL Server
database. Details of triggers and XML validations are beyond scope of this chapter; for more,
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming.

You can also use some elements of a database that don't really enforce data integrity but
instead help users insert correct values. Defaults can help insert a value when it is not

explicitly listed in the INSERT statement. SQL Server 2008 has also a Timestamp type; SQL
Server inserts and updates values of this type automatically and guarantees that values in

110

Inside Microsoft SQL Server 2008: T-SQL Querying

columns of this type are unique across a database. The IDENTITY property of a column can
help you insert sequential numbers.

One important thing you need to know is the order in which the system enforces constraints. You
probably noticed that | switched from discussing a general (and theoretical) implementation to

a SQL Server 2008-specific implementation. The details of constraints are quite system specific,
and it seems more appropriate to switch to the system that this book is about—namely, Microsoft
SQL Server 2008. Therefore, the order of execution in SQL Server is as follows:

Schema is checked (whether an update is valid for the table schema).
Data types are checked.

INSTEAD OF triggers fire instead of the actual statement.

Default constraints are applied.

Nullability is checked.

Primary Key and Unique constraints are checked.

Foreign Key and Check constraints are enforced.

® NS v~ w Db

Statement is executed.
9. AFTER triggers fire.

What this order tells you is that declarative constraints are enforced before the actual
statement, and they prevent improper updates, while AFTER triggers fire after the statement,
and you have to roll back an improper modification discovered by the statement's AFTER
trigger. This means that using declarative constraints is more efficient than using AFTER
triggers, and you should opt for using declarative constraints whenever possible. Don’t forget
another advantage in using declarative constraints: they can help in query optimization.

The Good, the Bad, and the ... Unknown!

The last question | want to touch on regarding data integrity is whether you should allow
NULLs in your database. In an ideal world, your database should represent true propositions
only; if something is NULL and you do not know what that NULL means, you cannot say it is
true. Therefore, from a strict point of view, you should not allow any NULLs.

However, in the real world, you always have some missing information, at least temporarily.
In addition, you really can experience Russell’s Paradox, as described in Chapter 2. In addition
to the theoretical description, I'd like to offer an example | found in Fermat’s Last Theorem
by Simon Singh (HarperPerennial, 2005), showing Russell’s Paradox in real life. This is the
problem of the meticulous librarian.

This library has two kinds of catalogs (of whatever you want); some list themselves in
references, and some don't. The librarian wants to make two new catalogs: one that lists all
catalogs that do list themselves and one that lists all catalogs that do not list themselves.

Chapter 3 The Relational Model 111

The problem is with the latter catalog: should it list itself? If it does list itself, by definition

it should not be listed. If it does not list itself, by definition it should be listed. Imagine you
have to insert these two catalogs in a database, and in a table describing catalogs, you have
an attribute that is a flag showing whether a catalog lists itself. What would you insert in this
attribute for the catalog that lists all catalogs that do not list themselves? | think that NULL is
quite all right, showing that you cannot have anything meaningful there.

Of course, in real life, you will encounter missing information because of many reasons other
than Russell's Paradox. Nevertheless, you have to find a way to deal with missing information.

ANSI standard prescribes and SQL Server implements NULLs for denoting missing values.
Note that NULL is not a value; it is just a marker. NULL doesn’t even have the privilege to be
equal to itself. Some authors (Date, Pascal) strictly forbid NULLs, others explicitly allow them
(Codd), and others (Halpin) do not discuss them—they just show how to model and use
them. Which is correct?

If NULLs were not allowed, you'd still have to implement some special values denoting
missing information. The advantage of this approach is that you could use standard

Boolean operators in your queries, and there would be no need for special operators that
handle NULLs. The disadvantage is that there is no single, standard, special value accepted
worldwide. In addition, a single special value would not be sufficient; we would actually

need one for each data type. Using NULLs means using a standard that is already accepted;
however, it also means introducing three-valued logic, where not true is not the same as false.
Three-valued logic makes queries more complicated.

After considering many pros and cons, my personal conclusion is that NULLs are here to stay,
and they are implemented by all major RDBMS; therefore, | prefer using them to inventing
special values. You'll learn a lot about writing efficient three-valued logic queries in this
book. Nevertheless, some NULLs can be avoided—namely, NULLs that are there because

an attribute is not applicable for a particular tuple of a relation. This is a matter of design. A
good schema constrains—in other words, excludes—NULLs that represent “not applicable.”
Therefore, the time has come to define a good schema!

Normalization and Other Design Topics

| need to clarify something immediately. This is not a modeling book; it is a practical book
with a couple of introductory chapters that explain the theory behind the practice. The
theory helps you understand why some things in SQL Server are implemented as they

are implemented. This book will help you better understand what you are doing when
you create and maintain a relational database as well as help you find different ways of
expressing queries, find more optimized queries, and so on. Therefore, | won't talk about
how to model; I'll talk about what you need to achieve with your models.

Many modeling books are on the market; | don't need to advertise them. | will mention a
couple of books I really like just to make this chapter more complete. Personally, | prefer the

112

Inside Microsoft SQL Server 2008: T-SQL Querying

object-role modeling (ORM) approach, and Information Modeling and Relational Databases,
2nd edition by Terry Halpin and Tony Morgan (Morgan Kauffman, 2008) is the bible of ORM.
For the most popular modeling approach, the ER approach, | like Data Modeling Essentials,
3rd edition by Graeme Simsion and Graham Witt (Morgan Kauffman, 2004), where you can
find a lot on the modeling process and finding information about business rules. Finally, if
you are developer and you already use Unified Modeling Language (UML) for modeling,
Database Design for Smarties: Using UML for Data Modeling by Robert J. Muller (Morgan
Kauffman, 1999) could be a good resource for you.

What you need to achieve in order to create a good relational model is mathematically
described with normalization and specialization. Because normalization is more complex, I'll
spend more time on it, although both parts are important for a good design. But before |
start with normalization, let me repeat a very simple yet important sentence about good
design: A relational database is well designed if you can reconstruct the predicates (and
propositions) used to describe the business problem.

Normal Forms Dealing with Functional Dependencies

Tables are normalized when they represent propositions about entities of one type—in other
words, when they represent a single set. This means that entities do not overlap in tables

and that tables are orthogonal or normal in mathematical terms. When a table meets a
certain prescribed set of conditions, it is said to be in a particular normal form. A database is
normalized when all tables are normalized. You can create fully normalized database models
with ORM or with the ER approach.

Normalization is a redesign process to unbundle the entities. The process involves
decomposition but not decomposition that leads to a loss of information. After the
normalization process, all the original information must be obtainable with queries that
involve relational operators such as Join and others. The normalization is achieved by
applying a sequence of rules to create what are called normal forms. The goal is to eliminate
redundancy and incompleteness. Note that the latter is often overlooked; however,
normalization eliminates incompleteness in addition to eliminating redundancy.

Many normal forms are defined. The most important ones are first, second, third,
Boyce-Codd, fourth, and fifth normal forms. If a database is in fifth normal form, it is
said to be fully normalized. If a database is not fully normalized, you can experience data
manipulation anomalies.

I'll start with the first four normal forms, which deal with functional dependencies.

A dependent variable is functionally dependent on an independent one when exactly one
value of the dependent variable exists for each value of independent variable. This means
that if we know the value of the independent variable, we know the value of the dependent
variable as well. In a relation, nonkey attributes are functionally dependent on keys; if

you know the key value, you can find the nonkey attribute value. This is what functional
dependency in a relation means.

Chapter 3 The Relational Model 113

First Normal Form

Imagine a real-world scenario with customers that order products. Customers, orders, and
products are entities you discovered when you got the description of the business scenario.
Initially, you model everything in a single table called Orders. Table 3-1 shows an imaginary
Orders table. Columns that are part of the key are shaded (Orderld only in this example).

TABLE 3-1 A Table Before 1NF

Orderld Customerld CustomerName OrderDate Items

1 1 Company ABC 2008-10-22 Ap Apples q=5, Ch Cherries q=10
2 1 Company ABC 2008-10-24 Ba Bananas q=12
3 2 Company ABC 2008-09-15 Ap Apples q=3, Ba Bananas =3

This design is, of course, problematic. Some possible data manipulation anomalies are the
following:

B |nsert

0 How do you insert a customer without an order? (By the way, can you see the
incompleteness problem?)

® Update

a If item Ba is renamed, how do you perform an update? You can easily miss some
row you should update. This occurs because of redundancy.

m Delete

0 If order 3 is deleted, the data for customer 2 is lost. This is also a problem of
incompleteness.

m Select

0 How do you calculate the total quantity of bananas? This is the problem with a
nonscalar column. The /tems column is a collection.

The first normal form (INF) says that a table is in first normal form if all columns are atomic.
No multivalued columns are allowed. Note that the INF definition simply states that a table
must represent a relation.

Decomposition has to start with the Items column. You need a single row per item in an
order, and every atomic piece of data of a single item (Productld, ProductName, Quantity)
must get its own column. However, after the decomposition, you get multiple rows for a
single order. Orderld by itself cannot be the key anymore. The new key is composed of

the Orderld and Productld columns. If you allow multiple products on a single order—for
example, each time with a different discount—you would not be able to use the Productid
as a part of the key. You would probably add /temld attribute and use it as a part of the new
key. A decomposed table in INF would look like Table 3-2.

114

Inside Microsoft SQL Server 2008: T-SQL Querying
TABLE 3-2 A Table in 1INF

Product
Orderld Customerld CustomerName OrderDate ItemID Productld Quantity Name
1 1 Company ABC 2008-10-22 1 Ap 5 Apples
1 1 Company ABC 2008-10-22 2 Ch 10 Cherries
2 1 Company ABC 2008-10-24 1 Ba 12 Bananas
3 2 XYZ 2008-09-15 1 Ap 3 Apples
3 2 XYZ 2008-09-15 2 Ba 3 Bananas

Before | start with 2NF, let me point out one common misconception with 1INF. You'll often
read about repeating group of columns. Take, for example, the Employees table design
shown in Figure 3-11.

Employees

PK | Employeeld

EmployeeName
ChildIName
Child2Name
Child3Name

FIGURE 3-11 The Employees table

You probably feel uncomfortable with this table. It has a repeating group of columns with a
similar name—ChildXName. ChildlName means the name of the oldest child, Child2Name
means the name of the second oldest, and Child3Name means the name of the third oldest
(disregarding twins). Of course, the question is, what if an employee has more than three
children? You'd probably create a new table. You might think that you are normalizing the
Employees table.

You know that the relational model does not depend on names. Let's rename the table and
all of the columns and get a table shown in Figure 3-12.

Orders

PK | Ordersld

CustomerID
OrderDate
DueDate
ShipDate

FIGURE 3-12 The Orders table (the Employees table renamed)

You probably feel more comfortable with this design, and this table seems perfectly
normalized. The Employees table was in INF as well, but the problem is that a constraint
is built into both tables. The first constraint says we have employees with three (or at most
three if the columns allow NULLs) children; the second constraint says an order has three

Chapter 3 The Relational Model 115

dates. Of course, the first constraint makes no sense in real world, and the first design was
bad anyway. However, it was normalized. Remember that you can constrain with the data
model itself with table design. Often a repeating group of columns with similar names really
represents a hidden collection; however, don’t decompose such groups automatically. Check
the business rules—the constrained predicates—first.

Second Normal Form

After achieving 1NF, as you saw in Table 3-2, you still have many updating anomalies:

B [nsert
0 How do you insert a customer without an order? (Incompleteness)
® Update

0 If a customer changes the order date for an order, how do you perform the
update? (Redundancy)

m Delete

0 If you delete order 3, the data for customer 2 is lost. (Incompleteness)

To achieve second normal form (2NF), a table must be in INF (do you see the linear
progression?), and every nonkey column must be functionally dependent on the entire key. This
means that no nonkey column can depend on a part of the key only. In Table 3-2, you need
Orderld only to get Customerld and OrderDate; you don't need /temld, which is also part of
the key. For the normal forms beyond 1NF, decomposition means creating new tables, not
just new rows like in INF. To achieve 2NF, you need to decompose the table into two tables,
like Tables 3-3 and 3-4 show.

TABLE 3-3 The Orders Table in 2NF

Orderld Customerld CustomerName OrderDate

1 1 Company ABC 2008-10-22
2 1 Company ABC 2008-10-24
3 2 XYZ 2008-09-15

TABLE 3-4 The OrderDetails Table in 2NF

Orderld Itemld Productld Quantity ProductName

1 1 Ap 5 Apples
1 2 Ch 10 Cherries
2 1 Ba 12 Bananas
3 1 Ap 3 Apples
3 2 Ba 3 Bananas

116

Inside Microsoft SQL Server 2008: T-SQL Querying

You make the split so that you leave attributes that depend on Order/d only in the Orders
table, and you introduce a new table, OrderDetails, with the other attributes. 2NF deals with
the relationship between columns that are part of a key and other columns that are not part
of a key.

To gain nonloss decomposition, you have to be able to join the two new tables back to
produce the original table. Therefore, you need some common value in both tables. Of
course, this is the Orderld column from the Orders table, which is, as you already know, the
foreign key column in the OrderDetails table.

Third Normal Form

With 2NF, we've resolved the order date update anomaly because of redundancy. However,
many issues remain:

B |nsert

0 How do you insert a customer without an order? (Incompleteness)

® Update
0 If a customer or a product is renamed, how do you perform the update?
(Redundancy)
B Delete

0 If you delete order 3, the data for customer 2 is lost. (Incompleteness)

To achieve third normal form (3NF), a table must be in 2NF, and every nonkey column must
be nontransitively dependent on every key. In other words, nonkey columns must be mutually
independent. For example, in Table 3-3, from Orderld, you can find Customerld, and from
Customerld, you can transitively find the CustomerName value. Try to find a similar problem
in Table 3-4 (of course, Productld and ProductName are not mutually independent).

To achieve 3NF, you must create new tables for dependencies between nonkey columns, as
shown in Tables 3-5 through 3-8.

TABLE 3-5 The Customers Table in 3NF

Customerld CustomerName
1 Company ABC
2 XYZ

TABLE 3-6 The Orders Table in 3NF

Orderld Customerld OrderDate
1 1 2008-10-22
2 1 2008-10-24
3 2 2008-09-15

Chapter 3 The Relational Model 117
TABLE 3-7 The OrderDetails Table in 3NF

Orderld Itemld Productld Quantity

1 1 Ap 5
1 2 Ch 10
2 1 Ba 12
3 1 Ap 3
3 2 Ba 3

TABLE 3-8 The Products Table in 3NF

Productld ProductName

Ap Apples
Ch Cherries
Ba Bananas

When you reach 3NF, you usually get rid of all data manipulation anomalies. Usually when
you normalize up to 3NF, the result satisfies BCNF, 4NF, and 5NF as well. Higher normal
forms violations are rare. To make this overview complete, however, I'll describe the higher
normal forms and give a couple of practical tips on how to recognize the possibility of
violating them.

Boyce-Codd Normal Form

The first question you might ask yourself is why the next NF is not called 4NF. The fact is that
Mr. Codd actually wanted to replace 3NF with the one we now know as Boyce-Codd normal
form (BCNF). Because it is stricter than 3NF, 3NF did not disappear, and consequently we
have somewhat inconsistent numbering.

I'll show how you can violate BCNF. Imagine for a moment we have the Orders table, without
the Orderld column and with a single order per customer per day allowed. Also, each

order has a standard ship time, and therefore OrderDate gives you the expected DueDate.
Table 3-9 shows this example. To make the dependency clear, the DueDate is always a day
after the OrderDate.

TABLE 3-9 The Imaginary Orders Table

Customerld OrderDate DueDate OtherOrderColumns

1 2008-10-22 2008-10-23
1 2008-10-24 2008-10-25
2 2008-09-15 2008-09-16

This table has two composite candidate keys: {Customerld, OrderDate} and {Customerld,
DueDate}. The candidate keys overlap on the Customerld column (which is shaded with

118

Inside Microsoft SQL Server 2008: T-SQL Querying

a darker color to show that it is used twice). It is in 3NF because all nonkey columns
intransitively depend on each key. However, a specific data manipulation anomaly is possible:

® Update

0 If a customer changes OrderDate, you should not forget to update the DueDate
as well. (Redundancy)

You can violate BCNF only in the rare situation that a table has more than one composite
candidate key and the candidate keys overlap. It would be possible to decompose the
Table 3-9 into two new tables based on two candidate keys, for the sake of brevity in short
notation, showing table headings only:

OrdersOrderDate {Customerld, OrderDate, OtherOrderColumns}
OrdersDueDate {Customerld, DueDate, OtherOrderColumns}

However, your common sense tells you this decomposition is not something you'd want in
your model. In addition, there is some hidden redundancy among the two new tables—other
nonkey columns repeat. It is not possible to solve this problem with normalization rules only.
(You already know that common sense can help you.) I'll return to this problem with a formal
solution later when | describe the Principle of Orthogonal Design.

| did not define BCNF yet. BCNF says that every determinant must be a key. The independent
part of a functional dependency is called the determinant. A key attribute must be a
determinant—it must not be determined. In Table 3-9, OrderDate determined DueDate and
vice versa, and both are key attributes (precisely, part of some key). In other words, to achieve
BCNF, you must have no functional dependencies between key attributes.

You can achieve BCNF without decomposition by using common sense. Tables 3-10 and 3-11
show the two possibilities to achieve BCNF in Table 3-9.

TABLE 3-10 The Orders Table in BCNF: First Solution

Customerld OrderDate StandardShippingTimeDays OtherOrderColumns
1 2008-10-22 1
1 2008-10-24 1
2 2008-09-15 1

TABLE 3-11 The Orders Table in BCNF: Second Solution

Orderld Customerld OrderDate DueDate OtherOrderColumns

1 1 2008-10-22 2008-10-23
2 1 2008-10-24 2008-10-25
3 2 2008-09-15 2008-09-16

Note that the solution shown in Table 3-11 does not define pairs (Customerld, OrderDate)
and (Customerld, DueDate) as keys anymore. Therefore, it is not really a solution if the two

Chapter 3 The Relational Model 119

pairs still determine orders. However, | introduced it here because it is closer to real-world
scenarios; a customer can submit more than one order per day.

Higher Normal Forms

Higher normal forms, namely, the fourth and the fifth normal forms, do not deal with
functional dependencies; they deal with multivalued and join dependencies. I'll now
introduce the fourth and the fifth normal forms.

Fourth Normal Form

As | mentioned earlier, violations of fourth and fifth normal forms are very rare, and they can
usually be avoided with common sense. To begin with, violations can occur only in a table
that consists of columns that together compose a key, with no nonkey column, and with at
least three key columns. The following examples of 4NF and 5NF violations, as well as the
solutions, are based on examples in Practical Issues in Database Management by Fabian
Pascal (Addison-Wesley, 2000).

Let me start by describing an example of a business problem. A fictitious company works
on projects. Employees are assigned to these projects. Each employee has a set of skills. If
an employee is assigned to a project, that employee performs all activities that he or she

can perform. Table 3-12 shows this example. Although not shown here, imagine there are
separate Employees, Projects, and Activities tables in the database.

TABLE 3-12 The Employees-Projects-Activities Table

Employee Project Activity
1 Proj 111 ABC
1 Proj 111 DEF
1 Proj 222 ABC
1 Proj 222 DEF
2 Proj 111 ABC
2 Proj 111 XYZ

You'll notice some redundancy. The following data manipulation anomalies are possible:

® |nsert

0 How do you assign an employee to a project if the employee has no skills yet?
(Incompleteness)

® Update

0 If an employee is reassigned from one project to another, how do you manage to
update all rows needed? (Redundancy)

120

Inside Microsoft SQL Server 2008: T-SQL Querying

m Delete

0 If you delete all project assignments for an employee, information regarding the
skills of this employee is lost. (Incompleteness)

The information about projects and activities repeats for each employee. We could avoid this
problem if we allow multivalued columns, as shown in Table 3-13.

TABLE 3-13 The Employees-Projects-Activities Table with Multivalued Columns

Employee Project Activity
1 Proj 111 ABC
Proj 222 DEF
2 Proj 111 ABC
XYZ

This situation indicates that there is something called multivalued dependency between
employees and projects and activities. Multivalued dependencies are a generalization of
functional dependencies. Fourth normal form (4NF) says that there must be no nontrivial
multivalued dependencies that are not functional dependencies. To achieve this, you have to
decompose Table 3-12, as shown in Tables 3-14 and 3-15.

TABLE 3-14 The Employees-Projects Table

Employee Project

1 Proj 111
1 Proj 222
2 Proj 111

TABLE 3-15 The Employees-Activities Table

Employee Activity

1 ABC
1 DEF
2 ABC
2 XYZ

Fifth Normal Form

I'll now change the business problem description slightly. If an employee is assigned to

a project, that employee doesn’t have to perform all activities that he or she has skills to
perform on this project; in fact, a project might not need some of the activities the assigned
employees has skills to perform. However, if a project includes an activity, an employee is
assigned to a project, and the employee assigned performs the aforementioned activity, the
employee must perform that activity on that project. An example is shown in Table 3-16.

Chapter 3 The Relational Model 121

TABLE 3-16 The Employees-Projects-Activities Table

Employee Project Activity
1 Proj 111 ABC
1 Proj 111 DEF
1 Proj 222 ABC
2 Proj 111 ABC
2 Proj 111 XYZ

Without decomposition, the possible data manipulation anomalies are similar to the
anomalies mentioned in the 4NF section. After decomposition in two tables, as you saw
in Tables 3-14 and 3-15, you try to join the decomposed tables to get back the original
Table 3-16. What happens is that you get an additional, spurious tuple:

{1, Proj 222, DEF}

With the decomposition of Table 3-16 into two tables that are actually projections of the
original table, you got a spurious row if you joined the two new tables. The problem lies

in the fact that the original table violated so-called join dependency constraint. A relation
satisfies join dependency if every legal value of relation is equal to the join of its projections.
Join dependencies are a generalization of multivalued dependencies. To solve the problem,
you need decomposition to three tables. In addition to the Employees-Projects and
Employees-Activities tables, you need also a Projects-Activities table, as shown in Table 3-17.

TABLE 3-17 The Projects-Activities Table

Project Activity
Proj 111 ABC
Proj 111 DEF
Proj 222 ABC
Proj 111 XYz

If there is no join dependency violation, a table is in 5NF. A more formal definition says that
every nontrivial join dependency in the table is implied by the keys of the table.

Finally, let me return to that common sense | mentioned a couple of times. What happens

if a project includes an activity, an employee is assigned to a project, and the assigned
employee performs the aforementioned activity, but the employee does not have to
perform that activity on that project? Then you need four tables, which is a design that you
would probably create initially. You need the Employees-Projects table, which shows which
employees are assigned to which project; the Employees-Activities table, which shows which
activities employees can perform; the Projects-Activities table, which shows which activities
are needed in which project; and, finally, the Employees-Projects-Activities table, which
shows which activity is performed by which employee on which project.

122

Inside Microsoft SQL Server 2008: T-SQL Querying

Additional Normal Forms

Before introducing fourth and fifth normal forms, let me briefly mention domain-key normal
form (DKNF). In DKNF, all constraints come from domains (types) and keys (candidate keys
and foreign keys). A table in DKNF is free of violating entity, referential, and domain integrity
rules, as described previously. It is in fifth normal form as well and thus fully normalized.
However, DKNF is a more theoretical than practical normal form. To achieve it, you would
have to create many, many different types. This is a nearly impossible mission, especially if
your types need to be widely accepted and your type constraints need to be agreed on. In
addition, users of your types (the database and other developers) would have to learn a lot
just to start using your types.

C. J. Date also proposed sixth normal form—a normal form that solves possible temporal
data anomalies. However, to solve temporal data problems, | would also have to introduce
the Interval data type, implement the Pack and Unpack operators, and solve some other
problems as well. Refer to Inside Microsoft SQL Server 2008: T-SQL Programming to find a
deeper discussion of temporal data and suggested solutions for temporal problems.

Denormalization

You should always try to reach at least 3NF when designing a database. However,
sometimes you have to turn the process around and, after fully normalizing a database, start
denormalizing it. The two main reasons for denormalization are performance and history,

as explained in Designing Database Solutions by Using Microsoft SQL Server 2005 by Dejan
Sarka, Andy Leonard, Javier Loria, and Adolfo Wiernik (Microsoft Press, 2007).

A classic business question is, how much of a product is currently in stock? You can calculate
quantities on stock by summarizing shipments and subtracting deliveries. States and levels
can always be calculated from events. However, this question could be very frequent.
Therefore, it makes sense to aggregate events to levels and states and maintain these
aggregates with every new event. In addition, you could speed joins by replicating a foreign
key from the first child table to the second one. This way queries might involve fewer tables
to join. In both cases, you denormalized to improve performance.

Imagine another example. An invoicing application uses a fully normalized database design.
A customer's address is stored in the Customers table only. If a customer moves, you update
that customer’s address with the new one. Let's say that after the update, the customer

asks you to reprint an old invoice. Now you have a problem because you didn't store the

old address. You can solve this problem by maintaining a copy of the customer address on
the invoice date in the Invoices table. (I should mention that this might not be treated as
denormalization—you probably just missed that InvoiceAddress attribute when analyzing the
business problem!) Figure 3-13 shows the fully normalized Invoices database.

Employees

PK | Employeeld

EmployeeName

Warehouses

PK | Warehouseld

WarehouseName

Chapter 3 The Relational Model

Customers Invoices
PK | Customerld PK | Invoiceld
CustomerName FK1 | Customerld
Address InvoiceDate
Cityld
FK1 | Employeeld
Products InvoiceDetails
PK | Productid PK,FK1 | Invoiceld
PK Iltemld
ProductName
Price FK2 Productld
Quantity
Discount
FK3 Warehouseld

FIGURE 3-13 Normalized Version of Invoices Database

You can denormalize in multiple places. For example, you might transfer the Employeeld

123

column to the Invoices table to avoid a join to the Customers table when you are analyzing

invoices over employees only. You could include the CustomerName and CustomerAddress
columns in the Invoices table to maintain history. You could maintain aggregates, such as

stock level per warehouse (in a separate table), total stock level per product, year-to-date sales
per customers, and more. Figure 3-14 shows a denormalized version of the invoices database.

FIGURE 3-14 The denormalized version of the invoices database

Remember to denormalize very deliberately. After denormalization, you introduce
possible update anomalies back to the database. You have to maintain redundant data
in user-defined transactions. If you insert a new event, for example, take care to update

Employees Customers Invoices
PK | Employeeld PK | Customerld PK | Invoiceld
EmployeeName CustomerName FK1 | Customerld
CustomerAddress InvoiceDate
Cityld Employeeld
FK1 | Employeeld CustomerName
ProductsinWarehouses YTDSales CustomerAddress
PK,FK1 | Warehouseld
PK,FK2 Productld
Products
QualityInStock
PK | Productid InvoiceDetails
ProductName PK,FK1 | Invoiceld
Price PK Itemld
Warehouses TotallnStock Fl2 Productld
PK | Warehouseld Quantity
Discount
WarehouseName FK3 Warehouseld

124

Inside Microsoft SQL Server 2008: T-SQL Querying

the level or the state derived from events in the same transaction. Triggers are especially
useful for maintaining denormalized data. With triggers, which are automatically part of a
transaction, you transfer the burden of maintaining the denormalized data on your RDBMS.

Generalization and Specialization

Let's return to the NULLs problem. Remember that you can have NULLs when an attribute
is not applicable for some tuples. You can eliminate the need to use NULLs in this way by
means of specialization by introducing subtypes. The problem could also be turned around;
remember the decomposition for resolving BCNF violation earlier in this chapter:

OrdersOrderDate {Customerld, OrderDate, OtherOrderColumns}
OrdersDueDate {Customerld, DueDate, OtherOrderColumns}

These two relations have many attributes in common, and this is a kind of redundancy. You
can solve this redundancy by means of generalization by introducing supertypes.

Two entities are of distinct, or primitive, types if they have no attributes in common. Some
relations can have both common and distinct attributes. If they have a common identifier
(that is, a common primary identification schema or a common primary key), we can talk
about a special supertype/subtype relationship. Supertypes and subtypes are helpful for
representing different levels of generalization or specialization. In a business problem
description, the verb is (or explicitly is a kind of) leads to a supertype/subtype relationship.
For example, a customer is a partner, and a supplier is a partner as well. Obviously, customers
and suppliers have something in common.

In the preceding example, partners are a supertype of customers and suppliers. If you start
with subtypes and find a supertype, you're using a bottom-up approach. The top-down
approach is the opposite. Whether you generalize or specialize, the same problem arises:
where to stop? This question can be answered easily with the top-down approach. Stop
specializing (in other words, stop introducing) subtypes when there are no additional
interesting attributes for another level of subtypes. The opposite technique is more
problematic; after all, you could finish with just a few entities, such as subjects, objects, and
events. One possible stopping condition is when you reach abstract objects, or objects that
do not exist in the real world. Abstract objects are not part of a relational database. However,
sometimes it is practical to introduce a supertype just to share a common identification
schema even between disjoint entities. From experience, | suggest a practical approach
that works quite well for me: stop when you have a problem naming the supertype (when
you reach names like thing). If you cannot name it immediately, you are probably trying to
generalize disjoint entities.

Here is some additional practical advice for generalization and specialization. If you have a
table with few known values and many NULLs in some column, it's probably a candidate for
specialization. Check whether those NULLs represent unknown values or attributes that are

Chapter 3 The Relational Model 125

nonapplicable for the rows in which they appear. You can get rid of NULLs for attributes that
are not applicable if you introduce subtypes. For the bottom-up approach, tables that have
many columns with similar or even the same names probably need a supertype table. Note
that you are again dependent on a good naming convention.

Figure 3-15 shows entities that need generalization.

CustomersOriginal SuppliersOriginal
PK | Customerid PK | Supplierld
CompanyName CompanyName
Address Address
DiscountCode URL

FIGURE 3-15 Before generalization

Let me mention a big issue with generalization. What if your system with the design

from Figure 3-15 is already in production with a lot of data already inserted? In that case,
generalization is not that simple. Not only do you have to introduce a generalized model like
the one shown in Figure 3-16, but you also have to take care of the data. You need to merge
and de-duplicate customers and suppliers in the case of a customer who is also a supplier.

Partners
Customers Suppliers
PK | Partnerld
PK,FK1 | Partnerld PK,FK1 | Partnerld
CompanyName
DiscountCode Address URL

FIGURE 3-16 After generalization

| gave you a lot of practical advice on how to find supertypes and subtypes. | also mentioned
a formal rule regarding when to stop specializing: when you no longer have any attributes
to add to a subtype. However, to make this topic consistent with the rest of this theoretical
chapter, we need a formal definition for when you have to stop generalizing.

Principle of Orthogonal Design

You find the most general supertypes when no two relations are be defined in such a way that
they can represent the same facts. A more formal definition says that your database should

be in accordance with the Principle of Orthogonal Design, as stated in An Introduction to
Database Systems, 8th edition by C. J. Date (Addison-Wesley, 2003):

Let A and B be distinct base relvars. Then there must not exist nonloss
decompositions of A and B into A1, A2, ..., Am and B1, B2, ..., Bn (respectively) such
that some projection Ai in set A1, A2, ..., Am and some projection Bj in set B1, B2, ..., Bn
have overlapping meanings.

126

Inside Microsoft SQL Server 2008: T-SQL Querying

Let me finish this topic with couple of words of explanation. The term relvar is used here for
relation, which is probably the correct term, as a relation is actually a relational variable. The
term orthogonal means that relations must have mutually independent meanings, and this is
exactly what we wanted for primitive types. You might notice that the principle is just formalized
common sense. While normalization reduces redundancy within relations, generalization

(or orthogonal design) reduces redundancy across relations. Finally, specialization reduces

the need to use the NULL value for an attribute that is not applicable. Note also that the
Principle of Orthogonal Design also prevents unnecessary horizontal decompositions based on
nonoverlapping restrictions of the original relation, as you would again get some projections of
the new decomposed relations with overlapping meanings. The implication of the orthogonal
design is that even if relations A and B have the same heading type, the following must hold:

A Union B :is a disjoint union
A Intersect B :is empty
A Minus B ris equal to A

You can use these equations for checking whether you have relations with non-overlapping
meaning.

Conclusion

This chapter was an introduction to the relational model. Basic terms such as type, tuple,
relation, and attribute were explained. The meaning of a relation should be now clear to you,
and you should recognize that you can treat a relation like a business entity or understand

it like a predicate with propositions. You can also use this dual approach when manipulating
relations; you can be prescriptive, by using relational algebra, or descriptive, by using
relational calculus. The importance of data integrity and the means to maintain data integrity
were emphasized. Namely, constraints were explained comprehensively. The problem of
NULLs was discussed. The chapter concluded with a set of formal rules and principles for
achieving a good design, including normalization and orthogonal design. Many times a
good naming convention was pointed out as crucial for a good design. All the theoretical
knowledge found in this chapter and Chapter 2 should help you understand the advanced
queries you'll encounter in the following chapters.

Chapter 4

Query Tuning

This chapter lays the foundation of query tuning knowledge required for both this book
and Inside Microsoft SQL Server 2008: T-SQL Programming. (For brevity, I'll refer to the
programming book as Inside T-SQL Programming and to both this book and Inside T-SQL
Programming as "these books.") Here you will be introduced to a tuning methodology,
acquire tools for query tuning, learn how to analyze execution plans and perform index
tuning, and learn the significance of preparing good sample data and the importance of
using set-based solutions.

When building the table of contents for this book, | faced quite a dilemma with regard to
the query tuning chapter, a dilemma that I've also faced when teaching advanced T-SQL—
should this material appear early or late? On one hand, the chapter provides important
background information that is required for the rest of the book; on the other hand, some
techniques used for query tuning involve advanced queries—sort of a chicken-and-egg
quandary. | decided to incorporate the chapter early in the book, but | wrote it as an
independent unit that can be used as a reference. My recommendation is that you read
this chapter before the rest of the book, and when a query uses techniques that you're not
familiar with yet, just focus on the conceptual elements described in the text. Some queries
will use techniques that are described later in the book (for example, pivoting, running
aggregations, the OVER clause, CUBE, CTEs, and so on) or in Inside T-SQL Programming
(for example, temporary tables, cursors, routines, CLR integration, compilations, and so
on). Don't be concerned if the techniques are not clear. Feel free, though, to jump to the
relevant chapter if you're curious about a certain technique. When you finish reading these
books, | suggest that you return to this chapter and revisit any queries that were not clear
at first to make sure you fully understand their mechanics.

Credits go to the mentors within the company | work for—Solid Quality Mentors—for their
contribution to this chapter, especially to Andrew J. Kelly and Eladio Rincon.

Sample Data for This Chapter

Throughout the chapter, | will use the Performance database and its tables in my examples.
Run the code in Listing 4-1 to create the database and its tables and populate them with
sample data. Note that it will take a few minutes for the code to finish.

127

128 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 4-1 Creation script for sample database and tables

SET NOCOUNT ON;

USE master;

IF DB_ID('Performance') IS NULL
CREATE DATABASE Performance;

GO

USE Performance;

GO

-- Creating and Populating the Nums Auxiliary Table
SET NOCOUNT ON;
IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL
DROP TABLE dbo.Nums;
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;
SET @max = 1000000;
SET @rc = 1;

INSERT INTO dbo.Nums(n) VALUES(1);

WHILE @rc * 2 <= @max

BEGIN
INSERT INTO dbo.Nums(n) SELECT n + @rc FROM dbo.Nums;
SET @rc = @Qrc * 2;

END

INSERT INTO dbo.Nums(n)
SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;
GO

-- Drop Data Tables if Exist

IF OBJECT_ID('dbo.EmpOrders', 'V') IS NOT NULL
DROP VIEW dbo.EmpOrders;

GO

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL
DROP TABLE dbo.Orders;

GO

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL
DROP TABLE dbo.Customers;

GO

IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL
DROP TABLE dbo.Employees;

GO

IF OBJECT_ID('dbo.Shippers', 'U') IS NOT NULL
DROP TABLE dbo.Shippers;

GO

-- Data Distribution Settings

DECLARE
@numorders AS INT,
@numcusts AS INT,
@numemps AS INT,
@numshippers AS INT,
@numyears AS INT,
@startdate AS DATETIME;

Chapter 4

SELECT
@numorders = 1000000,
@numcusts = 20000,
@numemps = 500,
@numshippers = 5,
@numyears = 4,
@startdate = '20050101"';

-- Creating and Populating the Customers Table
CREATE TABLE dbo.Customers
(
custid CHAR(11) NOT NULL,
custname NVARCHAR(50) NOT NULL
E

INSERT INTO dbo.Customers(custid, custname)
SELECT
'C' + RIGHT('000000000' + CAST(n AS VARCHAR(10)), 10) AS custid,
N'Cust_' + CAST(n AS VARCHAR(10)) AS custname
FROM dbo.Nums
WHERE n <= @numcusts;

ALTER TABLE dbo.Customers ADD
CONSTRAINT PK_Customers PRIMARY KEY(custid);

-- Creating and Populating the Employees Table
CREATE TABLE dbo.Employees
(
empid INT NOT NULL,
firstname NVARCHAR(25) NOT NULL,
Tastname NVARCHAR(25) NOT NULL
E

INSERT INTO dbo.Employees(empid, firstname, lastname)
SELECT n AS empid,
N'Fname_' + CAST(n AS NVARCHAR(10)) AS firstname,
N'Lname_"' + CAST(n AS NVARCHAR(10)) AS lastname
FROM dbo.Nums
WHERE n <= @numemps;

ALTER TABLE dbo.Employees ADD
CONSTRAINT PK_Employees PRIMARY KEY(empid);

-- Creating and Populating the Shippers Table
CREATE TABLE dbo.Shippers

(

shipperid VARCHAR(S) NOT NULL,
shippername NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Shippers(shipperid, shippername)
SELECT shipperid, N'Shipper_' + shipperid AS shippername
FROM (SELECT CHAR(ASCII('A') - 2 + 2 * n) AS shipperid
FROM dbo.Nums
WHERE n <= @numshippers) AS D;

Query Tuning

129

130 Inside Microsoft SQL Server 2008: T-SQL Querying

ALTER TABLE dbo.Shippers ADD
CONSTRAINT PK_Shippers PRIMARY KEY(shipperid);

-- Creating and Populating the Orders Table
CREATE TABLE dbo.Orders

(
orderid INT NOT NULL,
custid CHAR(1D) NOT NULL,
empid INT NOT NULL,

shipperid VARCHAR(5) NOT NULL,

orderdate DATETIME NOT NULL,

filler CHAR(155) NOT NULL DEFAULT('a')
)

INSERT INTO dbo.Orders(orderid, custid, empid, shipperid, orderdate)
SELECT n AS orderid,
'C' + RIGHT('000000000"'
+ CAST(
1 + ABS(CHECKSUM(NEWID())) % @numcusts
AS VARCHAR(10)), 10) AS custid,
1 + ABS(CHECKSUM(NEWID())) % @numemps AS empid,
CHAR(ASCII('A') - 2
+ 2 * (1 + ABS(CHECKSUM(NEWID())) % @numshippers)) AS shipperid,
DATEADD(day, n / (@numorders / (@numyears * 365.25)), @startdate)
-- late arrival with earlier date
- CASE WHEN n % 10 = 0
THEN 1 + ABS(CHECKSUM(NEWID())) % 30
ELSE O
END AS orderdate
FROM dbo.Nums
WHERE n <= @numorders
ORDER BY CHECKSUM(NEWID(Q));

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

CREATE NONCLUSTERED INDEX idx_nc_sid_od_i_cid
ON dbo.Orders(shipperid, orderdate)
INCLUDE (custid);

CREATE UNIQUE INDEX idx_unc_od_oid_i_cid_eid
ON dbo.Orders(orderdate, orderid)
INCLUDE(custid, empid);

ALTER TABLE dbo.Orders ADD
CONSTRAINT PK_Orders PRIMARY KEY NONCLUSTERED(orderid),
CONSTRAINT FK_Orders_Customers
FOREIGN KEY(custid) REFERENCES dbo.Customers(custid),
CONSTRAINT FK_Orders_Employees
FOREIGN KEY(empid) REFERENCES dbo.Employees(empid),
CONSTRAINT FK_Orders_Shippers
FOREIGN KEY(shipperid) REFERENCES dbo.Shippers(shipperid);
(€0]

Chapter 4 Query Tuning 131

The Orders table is the main data table, and it's populated with 1,000,000 orders spanning
four years beginning in 2005. The Customers table is populated with 20,000 customers, the
Employees table with 500 employees, and the Shippers table with five shippers. Note that |
distributed the order dates, customer IDs, employee IDs, and shipper IDs in the Orders table
with random functions. You might not get the same numbers of rows that I'll be getting in
my examples back from the queries, but statistically they should be fairly close.

The Nums table is an auxiliary table of numbers, containing only one column, called n,
populated with integers in the range 1 through 1,000,000.

The code in Listing 4-1 creates the following indexes on the Orders table:

B jdx_cl_od Clustered index on orderdate
B PK_Orders Unique nonclustered index on orderid, created implicitly by the primary key

B jdx_nc_sid_od_i_cid Nonclustered index on shipperid, orderdate, with included column
custid

B jdx_unc_od_oid_i_cid_eid Unique nonclustered index on orderdate, orderid, with
included columns custid, empid

Index structures and their properties will be explained later in the “Index Tuning” section.

Tuning Methodology

This section describes a tuning methodology that should help you detect performance
bottlenecks in your system. | will briefly discuss general performance bottlenecks, but keep in
mind that the focus of this chapter—and this book—is query tuning.

So, when your system suffers from performance problems, how do you start to solve the
problems?

The answer to this question reminds me of a programmer and an IT manager at a company |
worked for years ago. The programmer had to finish writing a component and deploy it, but
his code had a bug he couldn't find. He produced a printout of the code (which was pretty
thick) and went to the IT manager, who was in a meeting. The IT manager was extremely
good at detecting bugs, which is why the programmer sought him. The IT manager took

the thick printout, opened it, and immediately pointed to a certain line of code. "Here's your
bug,” he said. “Now go.” After the meeting was over, the programmer asked the IT manager
how he found the bug so fast. The IT manager replied, “I knew that anywhere | pointed there
would be a bug.”

You can point anywhere in the database and find room for tuning. But is it worth it? For
example, would it be worthwhile to tune the concurrency aspects of the system if blocking
contributes only to 1 percent of the waits in the system as a whole? It's important to follow

132 Inside Microsoft SQL Server 2008: T-SQL Querying

a path or methodology that leads you through a series of steps to the main problem areas
or bottlenecks in the system—those that contribute to most of the waits. This section will
introduce such a methodology.

Before you continue, drop the existing clustered index from the Orders table:

USE Performance;
GO
DROP INDEX dbo.Orders.idx_cl1_od;

Suppose your system suffers from performance problems as a whole—users complain that
“everything is slow.” Listing 4-2 contains a sampling of queries that run regularly in your
system.

LISTING 4-2 Sample queries

SET NOCOUNT ON;
USE Performance;
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderid = 3;
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderid = 5;
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderid = 7;
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate = '20080212"';
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate = '20080118';
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate = '20080828';
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate >= '20080101'
AND orderdate < '20080201"';
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate >= '20080401'
AND orderdate < '20080501';
GO

Chapter 4 Query Tuning 133

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate >= '20080201'
AND orderdate < '20090301';
GO
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate >= '20080501'
AND orderdate < '20080601';
GO

Restart your SQL Server instance and then run the code in Listing 4-2 several times (try 10).
SQL Server will internally record performance information you will rely on later. Restarting
your instance will reset some of the counters.

When dealing with performance problems, database professionals tend to focus on the
technical aspects of the system, such as resource queues, resource utilization, and so on.
However, users perceive performance problems simply as waits—they make a request and
have to wait to get the results back. A response that takes longer than three seconds to
arrive after an interactive request is typically perceived by users as a performance problem.
They don't really care how many commands wait on average on each disk spindle or what
the cache hit ratio is, and they don't care about blocking, CPU utilization, average page life
expectancy in cache, and so on. They care about waits, and that’s where performance tuning
should start.

The tuning methodology | recommend applies a top-down approach. It starts by investigating
waits at the instance level and then drills down through a series of steps until the processes/
components that generate the bulk of the waits in the system are identified. Once you identify
the offending processes, you can focus on tuning them. Following are the main steps of the
methodology:

Analyze waits at the instance level
Correlate waits with queues
Determine a course of action

Drill down to the database/file level

v W dNPRH

Drill down to the process level
6. Tune indexes/queries

In the following sections | cover in detail each step in the tuning methodology. | describe
some of the objects that you need to query to get performance information. In some cases
| give recommendations to automate the collection of certain performance data using
your own manual scheduled jobs. Where relevant | explain how the data can be analyzed
graphically using graphs that you manually create in tools like Microsoft Office Excel.

134

Inside Microsoft SQL Server 2008: T-SQL Querying

Note that SQL Server 2008 introduces a component called the data collector that collects
different sets of data (performance and other) from different sources and stores it in a
relational data warehouse known as the management data warehouse. The data collector
installs three system data collection sets that collect disk usage, server activity, and query
statistics information. The new data collection platform helps you automate the collection of
performance and other information and also analyze it graphically with preconfigured reports.
The system data collection sets are already configured to query many of the objects that | will
describe in the following sections. So naturally, if you're relying on the data collector to collect
such data, you won't necessarily need to configure your own manual jobs. Please refer to SQL
Server Books Online under “System Data Collection Sets” for specifics about the information
collected by those collection sets, the objects that are queried, and even the specific queries
used to query those objects.

Analyze Waits at the Instance Level

The first step in the tuning methodology is to identify at the instance level which types of waits
contribute most to the waits in the system. This is done by querying a dynamic management
view (DMV) called sys.dm_os_wait_stats. This DMV contains more than 400 wait types, most

of which are documented in SQL Server Books Online with at least a short description. If you
think about it, this is a manageable number that is convenient to work with as a starting point.
Some other performance tools give you too much information to start with and create a
situation in which you can't see the forest for the trees.

Run the following query to return the waits in your system sorted by type:

SELECT
wait_type,
waiting_tasks_count,
wait_time_ms,
max_wait_time_ms,
signal_wait_time_ms
FROM sys.dm_os_wait_stats
ORDER BY wait_type;

Here's an abbreviated version of the results | got when | ran this query on my system:

wait_type waiting wait max signal
_tasks _time _wait _wait
_count _ms _time _time
_ms _ms
ASYNC_IO_COMPLETION 3 1710 658 0
ASYNC_NETWORK_IO 288785 176144 959 21377
AUDIT_GROUPCACHE_LOCK O 0 0 0
CXPACKET 50281 195552 3482 20132

CXROWSET_SYNC 0 0 0 0

Chapter 4 Query Tuning 135

DAC_INIT 1 1 1 0
IO_COMPLETION 652 40492 1598 165
IO_RETRY 0 0 0 0
IOAFF_RANGE_QUEUE 0 0 0 0
LCK_M_S 24 25429 9065 9
LCK_M_SCH_M 18 166 34 5
LCK_M_SCH_S 1 654 654 0
PAGELATCH_SH 448 269 142 64
PAGELATCH_UP 15 14 4 7
PARALLEL_BACKUP_QUEUE 0 0 0 0
WRITELOG 5325 28738 309 2453
XACT_OWN_TRANSACTION O 0 0 0
XACT_RECLAIM_SESSION 0 0 0 0

Note Of course, you shouldn't draw conclusions about production systems from the output that
| got. Needless to say, my personal computer or your test computer or personal test environment
won't necessarily reflect a real production environment. I'm just using this output for illustration
purposes. I'll mention later which types of waits are typically predominant in production
environments.

The DMV accumulates values since the server was last restarted. If you want to reset its
values, run the following code (but don't run it now):

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

The DMV sys.dm_os_wait_stats contains the following attributes:

wait_type
waiting_tasks_count The number of waits on this wait type

wait_time_ms The total wait time for this wait type in milliseconds (including
signal_wait_time_ms)

max_wait_time_ms

signal_wait_time_ms The difference between the time the waiting thread was signaled
and when it started running

The meaning of most attributes should be simple enough to understand, except for the last
one, perhaps. A thread enters a wait state when the resource it is waiting for is not available.
Once the resource becomes available, the waiting thread is signaled. However, the CPU might
be busy at this point serving other threads. The attribute signal_wait_time_ms indicates the
time it took from the moment the thread is signaled that the resource is available until the

136

Inside Microsoft SQL Server 2008: T-SQL Querying

thread gets CPU time and starts using the resource. As you can imagine, high values in this
attribute typically indicate CPU problems.

Among the various types of waits, you will find ones related to locks, latches, I/O (including
I/O latches), parallelism, the transaction log, memory, compilations, OLEDB (linked servers
and other OLEDB components), and so on. Typically, you will want to ignore some types of
waits—for example, sleep wait types that occur when a thread is suspended doing nothing,
queue wait types that occur when a worker is idle waiting for a task to be assigned, or wait
types described specifically in SQL Server Books Online as not indicating a problem, such as
CLR_AUTO_EVENT, REQUEST_FOR_DEADLOCK_SEARCH, and others. Make sure you filter out
irrelevant waits so that they do not skew your calculations.

In many cases you'll find I/O-related waits are among the most common types of waits

(for example, IOLATCH waits), for several reasons. I/O is typically the most expensive resource
involved with data-manipulation activities. Also, when queries or indexes are not designed
and tuned well, the result is typically excessive I/O. Also, when customers think of “strong”
computers, they usually focus their attention on CPU and memory, and they don’t always pay
adequate attention to the I/0O subsystem. Database systems need strong I/O subsystems.

High values in network-related waits (for example, ASYNC_NETWORK_IO) may indicate a
network problem, though they may also indicate that the client is not consuming the data
sent to it by SQL Server fast enough.

Some systems don't necessarily access large portions of data; instead, these systems involve
processes that access small portions of data very frequently. Such is typically the case with
online transaction processing (OLTP) environments, which have stored procedures and queries
that access small portions of data but are invoked very frequently. In such environments,
compilations and recompilations of the code might be the main cause of a bottleneck, in which
case you will likely see high values in signal waits (related to CPU). Lots of use of ad-hoc queries
instead of stored procedures and prepared statements may lead to flooding the memory with
ad-hoc plans, in which case you will typically see high values in the CMEMTHREAD wait type,
which occurs when a task is waiting on a thread-safe memory object.

You may also have issues with parallel query plans that use too many threads. This may result
in long waits of threads that wait for other threads to finish their work (CXPACKET wait)
before they can continue; the system as a whole might not provide optimal throughput.
Such systems may benefit from lowering the max degree of parallelism. Note, though,

that sometimes the CXPACKET wait type is only a symptom caused by other reasons—for
example, excessive I/O resulting from lack of important indexes—in which case you will also
see high values in I/O-related waits.

OLTP systems also involve a lot of data modification in small portions, and the transaction
log often becomes a bottleneck in such environments. When SQL Server cannot write fast
enough to the log, you typically see high values in the WRITELOG wait type.

Chapter 4 Query Tuning 137

The tempdb database can also be a serious bottleneck because all temporary tables, whether
created implicitly by an execution plan or explicitly, are created in tempdb. SQL Server also uses
tempdb's space to perform other activities. Performance problems in tempdb may cause high
values in I/O-related waits and others. High values in latch waits (for example, PAGE_LATCH_UP)
may indicate contention on internal structures such as IAM, GAM, SGAM, and PFS pages. The
cause might be frequent allocations of pages for temporary tables, heavy inserts to heaps, and
other causes. Improper file layout may lead to such contention.

The OLEDB wait type represents waits related to linked servers, BULK INSERT, Full Text, and
others. However, note that an OLEDB call cannot yield; therefore, the wait state starts when
the call starts and ends when the call ends. This means that high values in this wait type don't
necessarily indicate a performance problem.

Occasionally, you also find systems with concurrency-related (blocking) problems, in which
case lock waits (LCK) will be high.

| gave a few examples for performance problems and the common types of waits that are
associated with them. This coverage is not complete and is provided just to give you a sense
of how wait stats information can be analyzed.

Isolating Top Waits

Let's get back to the wait information that you receive from the DMV. You probably won't

find it convenient to browse all wait types and try to manually figure out which are the most
substantial. You want to isolate the top waits—those that in total accumulate to some threshold
percentage of the total waits in the system. You can use a number like 80 percent because
typically a small number of wait types contributes to the bulk of the waits in the system.

The following query isolates the top waits that accumulate in total to 80 percent of the wait
time in the system, returning no fewer than five waits:

WITH Waits AS
(
SELECT
wait_type,
wait_time_ms / 1000. AS wait_time_s,
100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct,
ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn,
100. * signal_wait_time_ms / wait_time_ms as signal_pct
FROM sys.dm_os_wait_stats
WHERE wait_time_ms > 0
AND wait_type NOT LIKE N'%SLEEP%'
AND wait_type NOT LIKE N'%IDLE%'
AND wait_type NOT LIKE N'%QUEUE%'
AND wait_type NOT IN(C N'CLR_AUTO_EVENT'
, N'REQUEST_FOR_DEADLOCK_SEARCH'
, N'SQLTRACE_BUFFER_FLUSH'
/* filter out additional irrelevant waits */)

138

Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT
Wl.wait_type,
CAST(W1l.wait_time_s AS NUMERIC(12, 2)) AS wait_time_s,
CAST(W1.pct AS NUMERIC(5, 2)) AS pct,
CAST(SUM(W2.pct) AS NUMERIC(5, 2)) AS running_pct,
CAST(W1.signal_pct AS NUMERIC(5, 2)) AS signal_pct
FROM Waits AS W1
JOIN Waits AS W2
ON W2.rn <= Wl.rn
GROUP BY Wl.rn, Wl.wait_type, Wl.wait_time_s, Wl.pct, Wl.signal_pct
HAVING SUM(W2.pct) - Wl.pct < 80 -- percentage threshold
OR Wl.rn <=5
ORDER BY W1.rn;

This query generates (on my system) the following output:

wait_type wait_time_s pct running_pct signal_pct
PAGEIOLATCH_SH 2305.85 34.50 34.50 1.68
CXPACKET 1630.89 24.40 58.89 18.22
ASYNC_NETWORK_IO 1572.81 23.53 82.42 10.86
PAGEIOLATCH_EX 368.67 5.52 87.94 0.78
WRITELOG 160.28 2.40 90.34 11.53

This query uses techniques to calculate running aggregates, which I'll explain later in the
book. Remember, focus for now on the concepts rather than on the techniques used to
achieve them. This query returns the top waits that accumulate to 80 percent of the waits in
the system, after filtering out irrelevant wait types. Of course, you can adjust the threshold
and filter out other irrelevant waits to your analysis. To see at least n rows in the output (let's
say n = 5), the expression OR W1.rn <=5 is specified in the HAVING clause. With each wait
type, the query returns the following:

B The total wait time in seconds that processes waited on that wait type since the system
was last restarted or the counters were cleared

B The percentage of the wait time of this type out of the total
B The running percentage from the top-most wait type until the current one

B The percentage of the signal wait time out of the wait time (remember that wait_time_ms
includes signal_wait_time_ms)

Note In the sys.dm_os_wait_stats DMV, wait_time_ms represents the total wait time of all
processes that waited on this type, even if multiple processes were waiting concurrently. Still,
these numbers would typically give you a good sense of the main problem areas in the system.

Examining the top waits, you can identify several potential problem areas: read-related 1/0,
parallelism, and network. Waits related to write-related 1/O and writes to the transaction log
also appear in the output, but those seem minor compared to the others. With this information
in hand, you are ready for the next step.

Chapter 4 Query Tuning 139

Collecting Wait Information

I also find it handy to collect wait information in a table and update it at regular intervals
(for example, once an hour). By doing this, you can analyze the distribution of waits during
the day and identify peak periods. Note that if you enabled data collection and the system
collection set “Server Activity”, wait-stats information is automatically collected for you in the
management data warehouse. You can then analyze waits over time via the report Server
Activity History (found in SQL Server Management Studio by right-clicking Data Collection
under Management in Object Explorer and choosing Reports). In this section | describe what
you need to define in case you're not using the data collector to collect wait stats.

Run the following code to create the WaitStats table:

USE Performance;
IF OBJECT_ID('dbo.WaitStats', 'U') IS NOT NULL DROP TABLE dbo.WaitStats;

CREATE TABLE dbo.WaitStats

(
dt DATETIME NOT NULL DEFAULT (CURRENT_TIMESTAMP),
wait_type NVARCHAR(60) NOT NULL,
waiting_tasks_count BIGINT NOT NULL,
wait_time_ms BIGINT NOT NULL,
max_wait_time_ms BIGINT NOT NULL,
signal_wait_time_ms BIGINT NOT NULL
);

CREATE UNIQUE CLUSTERED INDEX idx_dt_type ON dbo.WaitStats(dt, wait_type);
CREATE INDEX idx_type_dt ON dbo.WaitStats(wait_type, dt);

Define a job that runs on regular intervals and uses the following code to load the current
data from the DMV:

INSERT INTO Performance.dbo.WaitStats

(wait_type, waiting_tasks_count, wait_time_ms,
max_wait_time_ms, signal_wait_time_ms)

SELECT
wait_type, waiting_tasks_count, wait_time_ms,
max_wait_time_ms, signal_wait_time_ms

FROM sys.dm_os_wait_stats

WHERE wait_type NOT IN (N'MISCELLANEOUS");

Remember that the wait information in the DMV is cumulative. To get the waits that took place
within each interval, you need to apply a self-join between two instances of the table—one
representing the current samples and the other representing the previous samples. The join
condition will match each current row to the row representing the previous sampling for the
same wait type. Then you can subtract the cumulative wait time of the previous sampling from
the current, thus producing the wait time during the interval. The following code creates the
IntervalWaits function, which implements this logic:

IF OBJECT_ID('dbo.IntervalWaits', '"IF') IS NOT NULL
DROP FUNCTION dbo.IntervalWaits;
GO

140 Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE FUNCTION dbo.IntervalWaits

(@fromdt AS DATETIME, @todt AS DATETIME)
RETURNS TABLE
AS

RETURN
WITH Waits AS
(
SELECT dt, wait_type, wait_time_ms,
ROW_NUMBER() OVER(PARTITION BY wait_type
ORDER BY dt) AS rn
FROM dbo.WaitStats
)
SELECT Prv.wait_type, Prv.dt AS start_time,
CAST((Cur.wait_time_ms - Prv.wait_time_ms)
/ 1000. AS NUMERIC(12, 2)) AS interval_wait_s
FROM Waits AS Cur
JOIN Waits AS Prv
ON Cur.wait_type = Prv.wait_type
AND Cur.rn = Prv.rn + 1
AND Prv.dt >= @fromdt
AND Prv.dt < DATEADD(day, 1, @todt)
GO

The function accepts the date boundaries of a period that you want to analyze. For example,
the following query returns the interval waits for the period '20090212' through ‘20090213’
(inclusive), sorted by the totals for each wait type in descending order, wait type, and start time:

SELECT wait_type, start_time, interval_wait_s

FROM dbo.IntervalWaits('20090212', '20090213') AS F

ORDER BY SUM(interval_wait_s) OVER(PARTITION BY wait_type) DESC,
wait_type, start_time;

| find Microsoft Office Excel PivotTables or Analysis Services cubes extremely handy in
analyzing such information graphically. These tools allow you to easily see the distribution
of waits graphically. For example, suppose you want to analyze the waits over the

period 20090212 through ‘20090213’ using Excel PivotTables. Prepare the following
IntervalWaitsSample view, which will be used as the external source data for the PivotTable:

IF OBJECT_ID('dbo.IntervalWaitsSample', 'V') IS NOT NULL
DROP VIEW dbo.IntervalWaitsSample;
GO

CREATE VIEW dbo.IntervalWaitsSample
AS

SELECT wait_type, start_time, interval_wait_s
FROM dbo.IntervalWaits('20090212', '20090215') AS F;
GO

Create a PivotTable and pivot chart in Excel and specify the IntervalWaitsSample view as the
PivotTable's external source data. Figure 4-1 shows what the PivotTable looks like with my
sample data, after filtering only the top waits.

Chapter 4 Query Tuning

9) s WaitStats Analysis - Micrasoft Excel PivotTable Tools - =
=T — |
| Home | Insert Pagelayout Formulss Data Review View Developer Options Design | @ - = X
& Calibri =0 General <A S=lnsert- X - ﬂ [ﬁ
G (B T oU- = (8- % s S Delete - | [3]"
Paste . Styles Sort & Find &
| E e A ERIlET] - | Blformat | @+ Fier Select-
Clipboard & Fant & Alignment G| Wumber & Cells Editing
@ Ssecurity Waming Data connections have been disabled optians.. 22
| ~1 - Q S ‘ wait_type ¥
A [B = D E PivokTabsle Field List
1 [wait_type lPacEIoLaTCH SH o7
2 alh Chooss fields to add to repart:
3 |Row Lab ASYHC_NETWORK_IO Ul wait_type
4 |2009-02 ‘Cg"?g;imo’“ tart_time
s nterval_wait_s
5200902 ioms _wait_
6 2009-02- - PAGEIOLATCH_SH
7 |2009-02- - WRITELOG
8 2003-02-
5 2003-02-
20 | 2005-02- Drag fields betwesn areas below:
11 |2009-02-| [Select Multiple Items 7 Report Filter 2 Column Labels
1 wait_type -
12 a0 | | |
13 /2003-02- .] RowLabels T vales
14 |2009-02-12 16:00 010725 ; B
=l start_tive < | | Sumofinterv..
15 |2009-02-12 11:00 45804
16 |2009-02-12 12:00 855375 Defer Layout Update Update
M 4+ M| Data i I—/

Ready | 3 |

FIGURE 4-1 PivotTable in Excel

Figure 4-2 has a pivot chart, showing graphically the distribution of the PAGEIOLATCH_SH
wait type over the input period.

PAGEIOLATCH_SH

1200

1000

 Total

2009-02-1200:00
2009-02-1201:00
2009-02-1202:00
2009-02-1203:00
2009-02-12 04:00
2009-02-1205:00
2009-02-12 06:00
2009-02-1207:00
2009-02-12 08:00
2009-02-12 09:00
2009-02-12 10:00
2009-02-1211:00
2009-02-1212:00
2009-02-1213:00
2009-02-12 14:00
2009-02-12 15:00
2009-02-12 16:00
2009-02-12 17:00
2009-02-12 18:00
2009-02-12 19:00
2009-02-12 20:00
2009-02-12 21:00
2009-02-12 22:00
2009-02-12 23:00
2009-02-1300:00
2009-02-13201:00
2009-02-1302:00
2009-02-1303:00
2009-02-13 04:00
2009-02-1305:00
2009-02-13 06:00
2009-02-1307:00
2009-02-13 08:00
2009-02-13 09:00
2009-02-13 10:00
2009-02-1311:00
2009-02-13 12:00
2009-02-1313:00
2009-02-13 14:00
2009-02-13 15:00
2009-02-13 16:00
2009-02-13 17:00
2009-02-13 18:00
2009-02-13 19:00
2009-02-13 20:00
2009-02-13 21:00
2009-02-13 22:00
2009-02-13 23:00

FIGURE 4-2 Pivot chart 1 in Excel

141

142

Inside Microsoft SQL Server 2008: T-SQL Querying

The PAGEIOLATCH_SH wait type indicates waits on |/O for read operations. You can clearly
see that, in our case, dramatic peaks occur every day around noon.

Figure 4-3 has a pivot chart showing graphically the distribution of all top wait types.

Wait Stats

3000

2500

2000

EWRITELOG
1500

W PAGEIOLATCH_SH
mLCK_M_S
= |0_COMPLETION

1000 W CHPACKET

W ASYNC_NETWORK_IO

FIGURE 4-3 Pivot chart 2 in Excel
Again, you can see that most waits occur around noon daily.

As an example of how handy the analysis of interval waits can be, in one of my tuning projects
| found high peaks of 1/0 latches every four hours that lasted for quite a while (almost the
whole four hours) and then dropped. Naturally, in such a case you look for activities that run
on a scheduled basis. Sure enough, the “criminal” was isolated: a scheduled job that invoked
the sp_updatestats stored procedure against every database every four hours and ran for
almost four hours. This stored procedure is used to update statistics globally at the database
level. Statistics are histograms maintained for columns that the optimizer uses to determine
selectivity of queries, density of joins, and so on. Apparently, in this case some years prior a
query didn't perform well because of a lack of up-to-date statistics on a particular indexed
column. The customer got a recommendation back then to refresh statistics, and running the
stored procedure seemed to solve the problem. Since then, the customer had been running
sp_updatestats globally every four hours.

Note that SQL Server automatically creates and updates statistics. Typically, the automatic
maintenance of statistics is sufficient, and you should intervene manually only in special cases.
And if you do intervene manually, do not use sp_updatestats globally! The sp_updatestats

Chapter 4 Query Tuning 143

stored procedure is useful mainly to refresh statistics globally after an upgrade of the product
or after attaching a database from an earlier version of the product or service pack level.

Ironically, when we found the problem, the query that was the trigger for creating the job
was not even used anymore in the system. We simply removed the job and let SQL Server use
its automatic maintenance of statistics. Naturally, the graph of 1/0 latches simply flattened,
and the performance problem vanished.

Correlate Waits with Queues

After you identify the top waits at the instance level, you should correlate them with queues
to identify the problematic resources. You mainly use Performance Monitor counters for
this task. For example, if you identified 1/O-related waits in the previous step, you would
check the different I/O queues, cache hit ratios, and memory counters. Fewer than two 1/0
commands should be waiting on an /O queue on average per spindle (disk). Cache hit ratios
should be as high as possible.

As for memory, it is tightly related to I/O because the more memory you have, the more
time pages (data and execution plans) can remain in cache, reducing the need for physical
I/0. However, if you have 1/O issues, how do you know if adding memory will really help?
You need to be familiar with the tools that would help you make the right choice. For
example, the counter SQL Server:Buffer Manager — Page life expectancy will tell you how
many seconds on average a page is expected to remain in cache without reference. Low
values indicate that adding memory will allow pages to remain longer in cache, while
high values indicate that adding memory won't help you much in this respect. The actual
numbers depend on your expectations and the frequency with which you run queries that
rely on the same data/execution plans. Typically, numbers greater than several hundred
indicate a good state of memory.

But let's say that you have very low values in the counter. Does this mean that you have to add
memory? Adding memory in such a case would probably help, but some queries lack important
indexes on the source tables and end up performing excessive 1/O that could be avoided with

a better index design. With less I/O and less memory pressure, the problem can be eliminated
without investing in hardware. Of course, if you continue your analysis and realize that your
indexes and queries are tuned well, you would then consider hardware upgrades.

Similarly, if you identified other types of waits as the top ones, you would check the relevant
queues and resource utilization. For example, if the waits involve compilations/recompilations,
you would check the compilations/recompilations, CPU utilization, context switching counters,
and so on.

SQL Server 2008 collects important performance counters (both generic operating system
counters and SQL Server instance counters) as part of the “Server Activity” collection set
(assuming it's enabled). If you prefer to collect such information yourself, you can use the
Windows Performance Monitor/System Monitor. SQL Server 2008 also provides you with

144

Inside Microsoft SQL Server 2008: T-SQL Querying

a DMV called sys.dm_os_performance_counters containing all the SQL Server instance
object-related counters that you can find in Performance Monitor. Unfortunately, this DMV
doesn't give you the more generic operating system counters, such as CPU utilization, /0
queues, and so on. You have to analyze those externally.

For example, when | ran the following query on my system, | got the output shown
(in abbreviated form) in Table 4-1:

SELECT
object_name,
counter_name,
instance_name,
cntr_value,
cntr_type

FROM sys.dm_os_performance_counters;

TABLE 4-1 Contents of sys.dm_os_performance_counters in Abbreviated Form

object_name

MSSQL$SQLO8:Buffer
Manager

MSSQL$SQLOS:Buffer
Manager

MSSQL$SQLO8:Buffer
Manager

MSSQL$SQLO8:Buffer
Manager

MSSQL$SQLO8:Buffer
Manager

MSSQL$SQLO8:Buffer
Manager

MSSQL$SQLO8:Buffer
Manager

MSSQL$SQLO8:Buffer
Manager

MSSQL$SQLO8:Buffer
Manager

MSSQL$SQLO8:Buffer
Manager

counter_name

Buffer cache hit ratio
Buffer cache hit ratio
base

Page lookups/sec
Free list stalls/sec
Free pages

Total pages

Target pages
Database pages

Reserved pages

Stolen pages

instance_name

cntr_value
153

153

36230931

164

69472

187769

58627

10681

cntr_type
537003264

1073939712

272696576

272696576

65792

65792

65792

65792

65792

65792

You might find the ability to query these performance counters in SQL Server useful because
you can use query manipulation to analyze the data. As with wait information, you can

collect performance counters in a table on regular intervals and then use queries and tools
such as PivotTables to analyze the data over time.

Chapter 4 Query Tuning 145
Determine Course of Action

The next step—after you have identified the main types of waits and resources involved—
represents a junction in the tuning process. Based on your discoveries thus far, you will
determine a course of action for further investigation. In our case, we need to identify the
causes of /O, parallelism, network-related waits, and transaction log-related waits (minor);
we will then continue with a route based on our findings. But if the previous steps had
identified blocking problems, compilation/recompilation problems, or others, you would
need to proceed with a completely different course of action.

The I/O-related waits (including 1/0O latches and write log waits) require us at this point to drill
down to the database level. | explain how this is done in the next section.

As | mentioned earlier, the parallelism waits (CXPACKET) occur in parallel query plans when
threads wait for an exchange packet from other threads before they can continue work. High
values in this wait type might indicate that CPU resources are not utilized optimally, especially
in OLTP environments where many requests run simultaneously. The problem may be mitigated
by lowering the maximum degree of parallelism in the server. Note that even when queries

are restricted to use only one CPU, it doesn't mean that SQL Server cannot utilize more than
one CPU; rather, a single query will not be processed with a parallel query plan. High values in
the CXPACKET wait type can also be caused by using hyperthreading. Note that high values in
CXPACKET wait type do not always represent a direct cause of a problem; instead, they can be
a symptom, in which case you will typically see high values in other wait types (for example, I/O
latches). Also, it is quite natural in parallel query plans for threads to wait for other threads to
finish work. So even when you have high values in this wait type, you won't always be able to
improve the system'’s throughput by lowering the maximum degree of parallelism.

High values in network waits might indicate network bandwidth problems, but they may
also indicate other problems. For example, the client application may have been written
inefficiently and can't consume the data fast enough from the moment it made the request.
This can happen, for example, when the client uses server-side cursors and in between

each fetch of a row it does a lot of processing. Also, some things that seem obvious to

most programmers are not necessarily obvious to everyone. This might surprise you, but
occasionally we find applications that do not do any filtering in the database as part of
their queries—instead, they do the filtering in the application. This, of course, can put an
enormous load on the network.

| discuss some of the other performance problems later in these books.

Drill Down to the Database/File Level

The next step in our tuning process is to drill down to the database/file level. You want to
isolate the databases that involve most of the cost. Within the database, you want to drill
down to the file type (data/log) because the course of action you take depends on the file

146

Inside Microsoft SQL Server 2008: T-SQL Querying

type. One of the tools that allows you to analyze I/O information at the database/file level is a
dynamic management function (DMF) called sys.dm_io_virtual_file_stats. The function accepts
a database ID and file ID as inputs and returns I/O information about the input database file.
You specify NULLs in both to request information about all databases and all files.

The function returns the following attributes:

database_id
file_id

sample_ms (the number of milliseconds since the instance of SQL Server has started
and can be used to compare different outputs from this function)

num_of_reads
num_of _bytes_read

io_stall_read_ms (the total time, in milliseconds, that the users waited for reads issued
on the file)

num_of_writes
num_of_bytes_written
io_stall_write_ms

io_stall (the total time, in milliseconds, that users waited for /O to be completed on
the file)

size_on_disk_bytes (in bytes)
file_handle (the Microsoft Windows file handle for this file)

Note The measurements are reset when SQL Server starts, and they indicate only physical I/O
against the files and not logical I/O.

At this point, we want to figure out which databases involve most of the I/0 and 1/O stalls in
the system and, within the database, which file type (data/log). The following query will give
you this information, sorted in descending order by the 1/0 stalls:

WITH DBIO AS

(

SELECT

DB_NAME (IVFS.database_id) AS db,

MF. type_desc,

SUM(IVFS.num_of_bytes_read + IVFS.num_of_bytes_written) AS io_bytes,
SUM(IVFS.io_stall) AS io_stall_ms

FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS IVFS

JOIN sys.master_files AS MF

ON IVFS.database_id = MF.database_id
AND IVFS.file_id = MF.file_id

GROUP BY DB_NAME(IVFS.database_id), MF.type_desc

Chapter 4 Query Tuning 147

SELECT db, type_desc,
CAST(1. * io_bytes / (1024 * 1024) AS NUMERIC(12, 2)) AS io_mb,
CAST(io_stall_ms / 1000. AS NUMERIC(12, 2)) AS 1io_stall_s,
CAST(100. * do_stall_ms / SUM(io_stall_ms) OVERQ
AS NUMERIC(10, 2)) AS do_stall_pct,
ROW_NUMBER() OVER(ORDER BY io_stall_ms DESC) AS rn
FROM DBIO
ORDER BY io_stall_ms DESC;

This query generates (on my system) the following output:

db type_desc io_mb io_stall_s do_stall_pct rn
Performance ROWS 26002.09 14364.84 86.77 1
MDW ROWS 1495.23 834.43 5.04 2
AdventureWorks2008 ROWS 99.82 311.11 1.88 3
Performance LOG 121.43 275.64 1.66 4
MDW LOG 625.91 177.80 1.07 5
tempdb ROWS 107.40 147.05 0.89 6
Northwind ROWS 38.39 117.32 0.71 7
msdb LOG 64.63 104.98 0.63 8
master ROWS 58.13 100.44 0.61 9
msdb ROWS 149.90 89.24 0.54 10
Generic LOG 1.05 12.25 0.07 11
model ROWS 8.52 3.66 0.02 12
tempdb LOG 7.34 3.54 0.02 13
pubs ROWS 4.57 2.64 0.02 14
InsideTSQL2008 ROWS 4.50 2.35 0.01 15
Generic ROWS 4.32 1.74 0.01 16
master LOG 1.07 1.61 0.01 17
AdventureWorks2008 LOG 0.23 1.59 0.01 18
Northwind LOG 0.07 1.30 0.01 19
InsideTSQL2008 LOG 0.12 1.09 0.01 20
pubs LOG 0.41 0.96 0.01 21
model LOG 0.56 0.40 0.00 22

The output shows the database name, file type, total I/O (reads and writes) in megabytes,
I/O stalls in seconds, I/O stalls in percent of the total for the whole system, and a row
number indicating a position in the sorted list based on I/O stalls. Of course, if you want,
you can calculate a percentage and row number based on 1/O as opposed to /O stalls, and
you can also use running aggregation techniques to calculate a running percentage, as |
demonstrated earlier. You might also be interested in a separation between the reads and
writes for your analysis. In this output, you can clearly identify the main element involving
most of the system’s 1/O stalls—the data portion of Performance, which scores big time
(86 percent of the stalls), and the data portion of MDW, which also incurs a large percent
(5 percent of the stalls). | enabled the data collector in my system and the three system
collection sets, which store the information in this management data warehouse. By default,
the collection frequency is 60 seconds. Behind, with about 1 to 2 percent each, are the
data portions of AdventureWorks2008 and tempdb and the log portions of Performance
and MDW. Obviously, you should focus on these elements, paying special attention to data
activity against the Performance database.

148

Inside Microsoft SQL Server 2008: T-SQL Querying

Regarding the bulk of our problem—I/O against the data portion of the Performance
database—you now need to drill down to the process level to identify the processes that
involve most of the waits.

If high waits are associated with the transaction log, you can identify the problematic
databases by using the sys.dm_io_virtual_file_stats DMF. This wasn't a significant issue in
any of the databases in my system, but let's assume it was. You first need to check whether
the log is configured adequately, that is, whether it is placed on its own disk drive with no
interference and, if so, whether the disk drive is fast enough. If the log happens to be placed
on a slow disk drive, you might want to consider dedicating a faster disk for it. Once the
logging activity exceeds the throughput of the disk drive, you start getting waits and stalls.
You might be happy dedicating a faster disk drive for the log, but then again, you might
not have the budget, or you might have already assigned the fastest disk you could for it.
Keep in mind that the transaction log is written sequentially, so striping it over multiple disk
drives won't help, unless you also have activities that read from the log (such as backups
and transactional replication). You might also be able to optimize the processes that cause
intensive logging by reducing their amount of logging. I'll elaborate on minimally logged
operations in Chapter 10, “Data Modification.”

As for tempdb, many activities—both explicit and implicit—might cause tension in tempdb to
the point where it can become a serious bottleneck in the system. The tempdb database is used
by SQL Server to store explicitly created temporary tables and table variables and implicitly
created worktables. It is also used as a temporary storage area for many other internal activities.
Several features that rely on row versioning keep their version store in tempdb, including
snapshot isolations, triggers, online index operations, and multiple active result sets (MARS).
Typically you'll have a lot of room for optimizing tempdb, and you should definitely give that
option adequate attention. I'll elaborate on tempdb and on row versioning in Inside T-SQL
Programming in the chapters that cover temporary tables, triggers, and transactions.

Note that two system collection sets collect I/O-related information (if enabled). The “Server
Activity” collection set collects some I/O-related performance counters and queries the
sys.dm_io_virtual_file_stats DMV. The "Disk Usage” collection set collects information about
data and log files from the catalog views sys.database_files, sys.partitions, sys.allocation_
units, and sys.internal_tables and the command DBCC SQLPERF (LOGSPACE). You also get
preconfigured reports called Server Activity History and Disk Usage Summary (in Object
Explorer, right-click Data Collection under Management and choose Reports), allowing you to
graphically analyze 1/0O information stored in the management data warehouse.

For our demonstration, let’s focus on solving the /O problems related to the data portion of
the Performance database.

Drill Down to the Process Level

Now that you know which databases (in our case, one) involve most of the performance
problem, you want to drill down to the process level, namely, identify the processes (stored
procedures, queries, and so on) that need to be tuned. For this task, you will find SQL Server's

Chapter 4 Query Tuning 149

built-in tracing capabilities extremely powerful. You need to trace a workload representing
the typical activities in the system against the databases you need to focus on, analyze the
trace data, and isolate the processes that need to be tuned.

Before | talk about the specific trace you need to create for such tuning purposes, I'd first like
to point out a few important tips regarding working with traces in SQL Server in general.

Traces have an impact on the performance of the system, and you should put effort into
reducing their impact. My good friend Brian Moran once compared the problematic aspect
of measuring performance to the Heisenberg Uncertainty Principle in quantum mechanics.
The principle was formulated by Werner Heisenberg in 1927. Very loosely speaking, when
you measure something, a factor of uncertainty is caused by your measurement. The more
precise the measure of something’s position, the more uncertainty there is regarding its
momentum (loosely, velocity and direction). So the more precisely you know one thing, the
less precisely you can know some parallel quantity. On the scale of atoms and elementary
particles, the effect of the uncertainty principle is very important. There’s no proof to
support the uncertainty principal, but the theory is mathematically sound and supported by
experimentation.

Going back to our traces, you don't want your tracing activity to cause a performance
problem itself. You can't avoid its effect altogether—that’s impossible—but you can definitely
do much to reduce it by following some important guidelines:

B Don't trace with the SQL Server Profiler GUI; instead, use the T-SQL code that defines
the trace. When you trace with Profiler, you're actually running two traces—one that
directs the output to the target file and one that streams the trace information to
the client running Profiler. You can define the trace graphically with Profiler and then
script the trace definition to T-SQL code using the menu item File | Export | Script Trace
Definition | For SQL Server 2005 - 2008. You can then make slight revisions to the
code depending on your needs. | like to encapsulate the code in a stored procedure
that accepts as arguments elements that | want to make variable—for example, the
database ID | use as a filter in the trace definition.

B Do not trace directly to a table, as this will have a significant performance impact.
Tracing to a file on a local disk is the fastest option (tracing to a network share is bad as
well). You can later load the trace data to a table for analysis using the fn_trace_gettable
function, using a BULK operation such as SELECT INTO.

B Tracing can produce enormous amount of data and excessive I/O activity. Make sure
the target trace file does not reside on disk drives that contain database files (such as
data, log, and tempdb). Ideally, dedicate a separate disk drive for the target trace files.

B Be selective in your choices of event classes and data columns—only trace what you
need, removing all default and unnecessary ones. Of course, don’t be too selective;
make sure that all relevant event classes and data columns are included. Be aware
that if you trace individual statement event classes (for example, SP:StmtCompleted,
SQL:StmtCompleted), those tend to produce large amounts of trace data because each

150

Inside Microsoft SQL Server 2008: T-SQL Querying

individual statement within a procedure/batch produces a trace event. Unless you really
need to trace the individual statements, consider tracing at the procedure/batch level
(for example, SP:Completed, SQL:BatchCompleted).

B Use the trace filtering capabilities to filter only the relevant events. For example, when
tuning a particular database, make sure you filter events only for the relevant database ID.

With these important guidelines in mind, let’s proceed to the trace that we need for our
tuning purposes.

Trace Performance Workload

You now need to define a trace that will help you identify processes that need to be tuned in
the Performance database. When faced with such a need, DBAs tend to trace slow-running
processes by filtering events where the Duration data column is greater than or equal to
some value (say, 3,000 milliseconds). Though such a trace can be very interesting, it won't
necessarily reveal all important queries that should be tuned. Think of the following: You
have a query that runs for about 30 seconds a couple of times a day and another query that
runs for a about half a second 40,000 times a day. Which would you say is more important to
tune? Obviously, the latter is more important, but if you filter only events that run for at least
three seconds, you'll filter out the more important query to tune.

In short, for our purposes you don't want to filter based on Duration at all. Of course, this
means that you might get enormous amounts of trace data, so make sure you follow the
guidelines | suggested earlier. You do want to filter only the databases that are relevant to
your tuning process.

As for event classes, if most activities in your system are invoked by stored procedures and
each stored procedure invokes a small or limited number of activities, trace the SP:Completed
event class. You will then be able to aggregate the data by the procedure. Similarly, if

most of the activities are invoked by batches with a small number of activities, trace the
SQL:BatchCompleted event class. However, if each procedure invokes many activities, you
want to trace the SP:StmtCompleted event class to capture each individual statement invoked
from each stored procedure. If you have activities that are submitted as ad-hoc batches

(as in our case), trace the SQL:StmtCompleted event class. Remember, though, that tracing
individual statement event classes can produce a lot of trace information and have an
impact on the traced SQL Server instance. As much as possible, try to limit such tracing to
short periods to collect a representative workload. Finally, if you have activities submitted

as remote procedure calls, trace the RPC:Completed event class. Notice that all event classes
are Completed ones as opposed to the respective Starting event classes. Only the Completed
event classes carry performance information such as Duration, CPU, Reads, and Writes
because, naturally, these values are unknown when the respective event starts.

As for data columns, you mainly need the TextData column that will carry the actual T-SQL
code and the relevant performance-related counters—for example, the Duration column.
Remember that users perceive waits as the performance problem, and Duration stands for

Chapter 4 Query Tuning 151

the elapsed time it took the event to run. If you're specifically targeting 1/0O-related problems,
you may want to analyze the Reads and Writes columns. | also like to trace the RowCounts
data column, especially when looking for network-related problems. Queries returning the
result set to the client with large numbers in this counter would indicate potential pressure
on the network. Other than that, you might want additional data columns based on your
needs. For example, if you later want to analyze the data by host, application, login, and so
on, make sure you also include the corresponding data columns.

You can define a trace following these guidelines and then script its definition to T-SQL code.
| did so and encapsulated the code in a stored procedure called PerfworkloadTraceStart.

The stored procedure accepts a database ID and file name as input parameters. It defines a
trace using the specified database ID as a filter and the given file name as the target for the
trace data; it starts the trace and returns the newly generated trace ID via an output parameter.
Run the following code to create the PerfworkloadTraceStart stored procedure:

SET NOCOUNT ON;
USE master;
GO

IF OBJECT_ID('dbo.PerfworkloadTraceStart', 'P') IS NOT NULL
DROP PROC dbo.PerfworkloadTraceStart;
GO

CREATE PROC dbo.PerfworkloadTraceStart
@dbid AS INT,
@tracefile AS NVARCHAR(245),
@traceid AS INT OUTPUT

AS

-- Create a Queue
DECLARE @rc AS INT;
DECLARE @maxfilesize AS BIGINT;

SET @maxfilesize = 5;

EXEC @rc = sp_trace_create @traceid OUTPUT, 0, @tracefile, @maxfilesize, NULL
IF (@rc !'= 0) GOTO error;

-- Set the events
DECLARE @on AS BIT;
SET @on = 1;

-- RPC:Completed

exec sp_trace_setevent @traceid, 10, 15, @on;
exec sp_trace_setevent @traceid, 10, 8, @on;
exec sp_trace_setevent @traceid, 10, 16, @on;
exec sp_trace_setevent @traceid, 10, 48, @on;
exec sp_trace_setevent @traceid, 10, 1, @on;
exec sp_trace_setevent @traceid, 10, 17, @on;
exec sp_trace_setevent @traceid, 10, 10, @on;
exec sp_trace_setevent @traceid, 10, 18, @on;
exec sp_trace_setevent @traceid, 10, 11, @on;

152

Inside Microsoft SQL Server 2008: T-SQL Querying

exec
exec
exec
exec

sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent

-- SP:Completed

exec
exec
exec
exec
exec
exec
exec
exec
exec
exec

sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent

-- SP:StmtCompleted

exec
exec
exec
exec
exec
exec
exec
exec
exec
exec
exec
exec
exec

Ssp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Ssp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent

-- SQL:BatchCompleted

exec
exec
exec
exec
exec
exec
exec
exec
exec
exec
exec
exec
exec

Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent

-- SQL:StmtCompleted

exec
exec
exec
exec
exec
exec
exec
exec
exec

Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Ssp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent

@traceid,
@traceid,
@traceid,
@traceid,

@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,

@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,

@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,

@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,
@traceid,

10, 12, @on;
10, 13, @on;
10, 6, @on;
10, 14, @on;
43, 15, @on;
43, 8, @on;
43, 48, @on;
43, 1, @on;
43, 10, @on;
43, 11, @on;
43, 12, @on;
43, 13, @on;
43, 6, @on;
43, 14, @on;
45, 8, @on;
45, 16, @on;
45, 48, @on;
45, 1, @on;
45, 17, @on;
45, 10, G@on;
45, 18, @on;
45, 11, @on;
45, 12, @on;
45, 13, @on;
45, 6, @on;
45, 14, @on;
45, 15, @on;
12, 15, @on;
12, 8, @on;
12, 16, @on;
12, 48, @on;
12, 1, @on;
12, 17, @on;
12, 6, @on;
12, 10, @on;
12, 14, @on;
12, 18, @on;
12, 11, @on;
12, 12, @on;
12, 13, @on;
41, 15, @on;
41, 8, @on;
41, 16, @on;
41, 48, G@on;
41, 1, @on;
41, 17, @on;
41, 10, G@on;
41, 18, @on;
41, 11, @on;

Chapter 4 Query Tuning 153

exec sp_trace_setevent @traceid, 41, 12, @on;
exec sp_trace_setevent @traceid, 41, 13, @on;
exec sp_trace_setevent @traceid, 41, 6, @on;
exec sp_trace_setevent @traceid, 41, 14, @on;

-- Set the Filters

-- Application name filter

EXEC sp_trace_setfilter @traceid, 10, 0, 7, N'SQL Server Profiler%';
-- Database ID filter

EXEC sp_trace_setfilter @traceid, 3, 0, 0, @dbid;

-- Set the trace status to start
EXEC sp_trace_setstatus @traceid, 1;

-- Print trace id and file name for future references
PRINT 'Trace ID: ' + CAST(@traceid AS VARCHAR(10))
+ ', Trace File: '"'' + @tracefile +

.trc ;
GOTO finish;

error:
PRINT 'Error Code: ' + CAST(@rc AS VARCHAR(10));

finish:

Go

Note that for demonstration purposes | included both proc/batch-level and statement-level
event classes, even though in my case it would have been enough to trace just the
SQL:StmtCompleted event class. In practice, you should include only the event classes that
you need.

Run the following code to start the trace, filtering events against the Performance database
and sending the trace data to the file ‘c:\temp\Perfworkload 20090212.trc"

DECLARE @dbid AS INT, @traceid AS INT;
SET @dbid = DB_ID('Performance');

EXEC master.dbo.PerfworkloadTraceStart
@dbid = @dbid,
@tracefile = 'c:\temp\Perfworkload 20090212"',
@traceid @traceid OUTPUT;

If you were to assume that the newly generated trace ID is 2, you would get the following
output:

Trace ID: 2, Trace File: 'c:\temp\perfworkload 20090212.trc"'
You need to keep the trace ID aside, as you will use it later to stop the trace and close it.

Next, run the sample queries from Listing 4-2 several times. When done, stop the trace and
close it by running the following code (assuming the trace ID is 2):

EXEC sp_trace_setstatus 2, 0;
EXEC sp_trace_setstatus 2, 2;

154

Inside Microsoft SQL Server 2008: T-SQL Querying

Of course, you should specify the actual trace ID you got for your trace. If you lost the scrap
of paper you wrote the trace ID on, query the sys.traces view to get information about all
running traces.

When tracing a workload in a production environment for tuning purposes, make sure you
trace a sufficiently representative one. In some cases, this might mean tracing for only a
couple of hours, while in other cases it can be a matter of days.

The next step is to load the trace data to a table and analyze it. Of course, you can open it
with Profiler and examine it there; however, typically such traces generate a lot of data, and
you can't do much with Profiler to analyze the data. In our case, we have a small number of
sample queries. Figure 4-4 shows what the trace data looks like when loaded in Profiler.

ﬂ S0L Server Profiler - [CATernphPerfurorkload 20000212 trc]

= File Edit Wiew Replay Tools Window Help
A NS EFal b= (= @ = @
| EventClass ‘ TextData | Duration | CPU | Reads: | Wintes | RowCountz | MTUserMame | HostMame | Applicationt

coL:eatchcompleted SELECT orderid, c.. [u] [u] 4 [u] 1 Gandalf ooao Microsoft
SOL:stmtCompl eted SELECT orderid, c.. 162 [u] 734 [u] 853 Gandalf ooao Microsoft
SqL:BatchCompleted SELECT orderid, c.. 162 u} 734 u} 883 Gandalf poao Microsoft
SOl stmtCompl eted SELECT orderid, c.. 12% [u] 739 [u] &858 Gandalf ooao Microsoft
sqL:Batchcompleted SELECT orderid, c.. 125 [u] 733 [u] &858 Gandalf ooao Microsoft
SOL:stmtCompleted SELECT arderid, c.. 100 o 24 o 675 Gandalf poao Microsatt
coL:eatchCompleted SELECT orderid, o.. 100 [u] 724 [u] &75 Gandalf ooao Microsoft
SOL:SstmtCompl eted SELECT orderid, c.. 723 353 25009 [u] z1z09 Gandalf ooao Microsoft
sqOL:Batchcompleted SELECT orderid, c.. 24 359 25003 o z1z08 Gandalf poao Microsatt
SOl stmtCompl eted SELECT orderid, c.. 835 243 28009 [u] 0549 Gandalf ooao Microsoft
SoL:Batchcompleted SELECT orderid, © 835 343 25009 [u] 20549 Gandalf ooao Microsoft
SOL: stmtCompl eted E507 FOZ 25011] zzgsz41 Gandalf Doao Microsofi
SqL:eatchCompleted SELECT orderid, c E50F FO2 25011 [u] 223241 Gandalf ooao Microsaft
SOL:SstmtCompl eted SELECT orderid, c... 73z 32F 25009 [u] 21213 Gandalf ooao Microsoft
SL:EatchCompleted SELECT orderid, c... 73z 3EF z500% [u] z1z13 Gandalf ooao Microsofi
sOL:stmtCompleted SET NOCOUNWT ON; [u] [u] [u] [u] 0 Gandalf ooao Microsaft
SOL:stmtCompl eted USE Performance; [u] [u] [u] [u] 0 Gandalf ooao Microsoft
SOL:EatchCompleted SET NOCOUNT OM; [u] [u] [u] [u] 0 Gandalf ooao Microsofi
SOL:stmtCompleted SELECT arderid, c... u} u} 4 u} 1 Gandalf poao Microsoft
coL:eatchcompleted SELECT orderid, c... [u] [u] 4 [u] 1 Gandalf ooao Microsoft
SOL:stmtCompl eted SELECT orderid, c... [u] [u] 4 [u] 1 Gandalf ooao Microsoft

] I

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

HERE orderdate 'Z0080z01°"

AND orderdate '200%0301";

FIGURE 4-4 Performance workload trace data

Examining the trace data, you can clearly see some long-running queries that generate

a lot of I/O. These queries use range filters based on the orderdate column and seem to
consistently incur about 25,000 reads. The Orders table currently contains 1,000,000 rows
and resides on about 25,000 pages. This tells you that these queries are causing full table
scans to acquire the data and are probably missing an important index on the orderdate
column. The missing index is probably the main cause of the excessive 1/0 in the system.

Chapter 4 Query Tuning 155

Also, you can find some queries that return a very large number of rows in the result
set—several thousand and, in some cases, hundreds of thousands of rows. You should
check whether filters and further manipulation are applied in the server when possible
rather than bringing everything to the client through the network and performing
filtering and further manipulation there. These queries are probably the main cause of
the network issues in the system.

Of course, such graphical analysis with Profiler is feasible only with tiny traces such as the one
we're using for demonstration purposes. In production environments, it's just not realistic;
you need to load the trace data to a table and use queries to analyze the data.

Analyze Trace Data

As | mentioned earlier, you use the fn_trace_gettable function to return the trace data in
table format. Run the following code to load the trace data from our file to the Workload
table:

USE Performance;
IF OBJECT_ID('dbo.Workload', 'U') IS NOT NULL DROP TABLE dbo.Workload;
GO

SELECT CAST(TextData AS NVARCHAR(MAX)) AS tsql_code,
Duration AS duration
INTO dbo.Workload
FROM sys.fn_trace_gettable('c:\temp\Perfworkload 20090212.trc', NULL) AS T
WHERE Duration > 0
AND EventClass IN(41, 45);

Note that this code loads only the TextData (T-SQL code) and Duration data columns to focus
particularly on query run time. Typically, you would want to also load other data columns
that are relevant to your analysis—for example, the /O and CPU counters, row counts, host
name, application name, and so on. Also, because in this case | want to analyze individual
statements, I'm filtering event classes 41 (SQL:StmtCompleted) and 45 (SP:StmtCompleted).

Remember that it is important to aggregate the performance information by the query
or T-SQL statement to figure out the overall performance impact of each query with its
multiple invocations. The following code attempts to do just that, and it generates the
output shown in abbreviated form in Table 4-2:

SELECT

tsql_code,

SUM(duration) AS total_duration
FROM dbo.Workload
GROUP BY tsql_code;

156 Inside Microsoft SQL Server 2008: T-SQL Querying

TABLE 4-2 Aggregated Duration by Query in Abbreviated Form

tsql_code duration

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 1326071
WHERE orderdate = '20080118';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 1519084
WHERE orderdate = '20080212"';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 1083055
WHERE orderdate = '20080828';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 7998453
WHERE orderdate >= '20080101' AND orderdate < '20080201';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 65186723
WHERE orderdate >= '20080201' AND orderdate < '20090301';

But we have a problem. You can see in the aggregated data that some queries that are logically
the same or follow the same pattern ended up in different groups. That's because they
happened to be using different values in their filters. Only query strings that are completely
identical were grouped together. As an aside, you wouldn’t be facing this problem had you
used stored procedures, each invoking an individual query or a very small number of queries.
Remember that in such a case you would have traced the SP:Completed event class, and then
you would have received aggregated data by the procedure. But that’s not the case here.

A simple but not very accurate way to deal with the problem is to extract a substring of the
query strings and aggregate by that substring. Typically, the left portion of query strings that
follow the same pattern is the same, while somewhere to the right you have the arguments
that are used in the filter. You can apply trial and error, playing with the length of the
substring that you will extract; with luck, the substring will be long enough to allow grouping
queries following the same pattern together and small enough to distinguish queries of
different patterns from each other. This approach, as you can see, is tricky and would not
guarantee accurate results. Essentially, you pick a number that seems reasonable, close your
eyes, and hope for the best.

For example, the following query aggregates the trace data by a query prefix of 100 characters
and generates the output shown in Table 4-3:

SELECT
SUBSTRING(tsql_code, 1, 100) AS tsql_code,
SUM(duration) AS total_duration

FROM dbo.Workload

GROUP BY SUBSTRING(tsql_code, 1, 100);

Chapter 4 Query Tuning 157

TABLE 4-3 Aggregated Duration by Query Prefix

tsql_code total_duration
SELECT orderid, custid, empid, shipperid, orderdate, filler 3928210

FROM dbo.Orders WHERE orderdate = '200

SELECT orderid, custid, empid, shipperid, orderdate, filler 89089077
FROM dbo.Orders WHERE orderdate >= '20

SELECT orderid, custid, empid, shipperid, orderdate, filler 2000

FROM dbo.Orders WHERE orderid = 5;

SELECT orderid, custid, empid, shipperid, orderdate, filler 1000

FROM dbo.Orders WHERE orderid = 7;

In our case, this prefix length did the trick for some queries, but it wasn't very successful
with others. With more realistic trace data, you won't have the privilege of looking at a tiny
number of queries and being able to play with the numbers so easily. But the general idea is
that you adjust the prefix length by applying trial and error.

The following code uses a prefix length of 94 and generates the output shown in Table 4-4:

SELECT
SUBSTRING(tsql_code, 1, 94) AS tsql_code,
SUM(duration) AS total_duration

FROM dbo.Workload

GROUP BY SUBSTRING(tsql_code, 1, 94);

TABLE 4-4 Aggregated Duration by Query Prefix, Adjusted

tsql_code total_duration
SELECT orderid, custid, empid, shipperid, orderdate, filler 93017287
FROM dbo.Orders WHERE orderdate

SELECT orderid, custid, empid, shipperid, orderdate, filler 93017287
FROM dbo.Orders WHERE orderdate

Now you end up with overgrouping. In short, finding the right prefix length is a tricky
process, and its accuracy and reliability are questionable.

A much more accurate approach is to parse the query strings and produce a query signature
for each. A query signature is a query template that is the same for queries following the
same pattern. After creating these, you can then aggregate the data by query signatures
instead of by the query strings themselves. SQL Server 2008 provides you with the sp_get_
query_template stored procedure, which parses an input query string and returns the query
template and the definition of the arguments via output parameters.

For example, the following code invokes the stored procedure, providing a sample query
string as input:

DECLARE @my_templatetext AS NVARCHAR(MAX) ;
DECLARE @my_parameters AS NVARCHAR (MAX) ;

158

Inside Microsoft SQL Server 2008: T-SQL Querying

EXEC sp_get_query_template
N'SELECT * FROM dbo.T1 WHERE coll = 3 AND col2 > 78',
@my_templatetext OUTPUT,
@my_parameters OUTPUT;

SELECT @my_templatetext AS querysig, @my_parameters AS params;

This code generates the following output:

querysig params

select * from dbo . T1l where coll = @ and col2 > @1 @0 1int,@l int

The problem with this stored procedure is that you need to use a cursor to invoke it against
every query string from the trace data, and this can take quite a while with large traces. The
stored procedure also (by design) returns an error in some cases (see SQL Server Books Online
for details), which could compromise its value. It would be much more convenient to have this
logic implemented as a function, allowing you to invoke it directly against the table containing
the trace data. Fortunately, such a function exists; it was written by Stuart Ozer, who is with the
Microsoft SQL Server Customer Advisory Team (SQL CAT). | would like to thank him for allowing
me to share the code with the readers of this book. Here's the function’s definition:

IF OBJECT_ID('dbo.SQLSig', 'FN') IS NOT NULL
DROP FUNCTION dbo.SQLSig;
GO

CREATE FUNCTION dbo.SQLSig
(@1 NTEXT, @parselength INT = 4000)
RETURNS NVARCHAR(4000)

-- This function is provided "AS IS" with no warranties,
-- and confers no rights.
--Use of included script samples are subject to the terms specified at
-- http://www.microsoft.com/info/cpyright.htm
-- Strips query strings
AS
BEGIN
DECLARE @pos AS INT;
DECLARE @mode AS CHAR(10);
DECLARE @maxTength AS INT;
DECLARE @p2 AS NCHAR(4000);
DECLARE @currchar AS CHAR(1), @nextchar AS CHAR(1);
DECLARE @p2l1en AS INT;

SET @maxlength = LEN(RTRIM(SUBSTRING(@p1l,1,4000)));
SET @maxTength = CASE WHEN @maxTength > @parselength
THEN @parselength ELSE @maxTength END;

SET @pos = 1;

SET @p2 = '';

SET @p2len = 0;

SET @currchar = '';

set @nextchar = ;
SET @mode = 'command';

Chapter 4 Query Tuning 159

WHILE (@pos <= @maxlength)
BEGIN
SET @currchar = SUBSTRING(@pl,@pos,1);
SET @nextchar SUBSTRING(@pl,@pos+1,1);
IF @mode = 'command'
BEGIN
SET @p2 = LEFT(@p2,@p21en) + @currchar;
SET @p2len = @p2len + 1 ;

IF @currchar IN (',',"'('," ','=",'<",'>","1")
AND @nextchar BETWEEN 'O' AND '9'
BEGIN

SET @mode = 'number';
SET @p2 = LEFT(@p2,@p2len) + "#';
SET @p2len = @p2len + 1;
END
IF @currchar =
BEGIN
SET @mode = 'literal';
SET @p2 = LEFT(@p2,@p2len) + "#''";
SET @p2len = @p2len + 2;
END
END
ELSE IF @mode = 'number' AND @nextchar IN (',',")"," ','=",'<",'>",'"I")
SET @mode= 'command';
ELSE IF @mode = 'Titeral' AND @currchar = ''"'
SET @mode= 'command';

SET @pos = @pos + 1;
END
RETURN @p2;
END
GO

The function accepts as inputs a query string and the length of the code you want to parse.
The function returns the query signature of the input query, with all parameters replaced

by a number sign (#). Note that this is a fairly simple function and might need to be tailored
to particular situations. Run the following code to test the function:

SELECT dbo.SQLSig
(N'"SELECT * FROM dbo.T1l WHERE coll = 3 AND col12 > 78", 4000);

You get the following output:

SELECT * FROM dbo.T1 WHERE coll = # AND col2 > #

Of course, you could now use the function and aggregate the trace data by query signature.
However, keep in mind that although T-SQL is very efficient with data manipulation, it is slow
in processing iterative/procedural logic. This is a classic example where a common language
run-time (CLR) implementation of the function makes more sense. The CLR is much faster
than T-SQL for iterative/procedural logic and string manipulation. SQL Server 2008 allows
you to develop .NET routines based on the CLR.

160 Inside Microsoft SQL Server 2008: T-SQL Querying

Listing 4-3 has the definition of a CLR-based, user-defined function called RegexReplace
using C# code.

LISTING 4-3 RegexReplace functions

using Microsoft.SqlServer.Server;
using System.Data.SqlTypes;
using System.Text.RegularExpressions;

public partial class RegExp
{
[SqlFunction(IsDeterministic = true, DataAccess = DataAccessKind.None)]
public static SqlString RegexReplace(
Sql1String input, SqlString pattern, SqlString replacement)
{
return (SqlString)Regex.Replace(
input.Value, pattern.Value, replacement.Value);

The function merely calls the Replace method of the Regex object, exposing replacement
and parsing capabilities based on regular expressions. The function exposes generic
pattern-based string replacement capabilities using regular expressions.

Note | didn't bother checking for NULL inputs in the CLR code because T-SQL allows you to
specify the option RETURNS NULL ON NULL INPUT when you register the functions, as | will
demonstrate later. This option means that when a NULL input is provided, SQL Server doesn't
invoke the function at all; rather, it simply returns a NULL output.

If you're familiar with developing CLR routines in SQL Server, deploy these functions in the
Performance database. If you're not, just follow these steps:

1. Create a new Microsoft Visual C# Class Library project in Microsoft Visual Studio 2008
(File | New | Project... | Visual C# | Class Library).

2. In the New Project dialog box, name the project and solution RegExp, specify C:\ as
the location, and confirm.

3. Rename the file Classl.cs to RegExp.cs and within it paste the code from Listing 4-3,
overriding its current content.

4. Build the assembly by choosing the Build | Build RegExp menu item. A file named
C:\RegExp\RegExp\bin\Debug\RegExp.dIl containing the assembly is created.

5. At this point, you go back to SQL Server Management Studio (SSMS) and apply a
couple of additional steps to deploy the assembly in the Performance database

Chapter 4 Query Tuning 161

and then register the RegexReplace function. But first, you need to enable CLR in SQL
Server (which is disabled by default) by running the following code:

EXEC sp_configure 'clr enabled', 1;
RECONFIGURE;

6. Load the intermediate language (IL) code from the .dll file into the Performance
database by running the following code:

USE Performance;
CREATE ASSEMBLY RegExp
FROM 'C:\RegExp\RegExp\bin\Debug\RegExp.d11";

7. Register the RegexReplace function by running the following code:

CREATE FUNCTION dbo.RegexReplace(
@input AS NVARCHAR (MAX) ,
@pattern AS NVARCHAR (MAX) ,
@replacement AS NVARCHAR(MAX))
RETURNS NVARCHAR (MAX)
WITH RETURNS NULL ON NULL INPUT
EXTERNAL NAME RegExp.RegExp.RegexReplace;
GO

You're done. At this point, you can start using the function like you do any other user-defined
function.

You can now use the RegexReplace function to produce a query signature for query strings
by using a regular expression that has the right parsing logic. For example, the following
code shows how to use the function in a query against the Workload table to produce query
signatures for the query strings stored in the tsql_code attribute:

SELECT
dbo.RegexReplace(tsql_code,
N'CI\s, (=<>1TC2IA\TT+I\IID) (2: (2: (2: (7# expression coming

Y2:CIND?2C ") C[AY T " D)*C ")) (7# character
)| (?:0x[\da-fA-F]*) (?# binary
Y2 [-+12C2:(?2: [\d]*\. [\d]*| [\d]+) (?# precise number
)(?:[eE]?[\d]I*))) (?# imprecise number
Y2 [~1?2[-+17C2: [\d]1+)) (?# integer
) INST?IN\-NN/ABNNIN\AT[\s]?7)?)+(?# operators
N,
N'$1$2$3#%4') AS sig,
duration

FROM dbo.Workload;

This regular expression covers cases that the T-SQL function overlooks, and it can be easily
enhanced to support more cases if you need it to. In case you're curious, producing query
signatures with the RegexReplace function is faster than producing them with the T-SQL
function by a factor of 10.

162 Inside Microsoft SQL Server 2008: T-SQL Querying

This query generates the output shown in Table 4-5 in abbreviated form.

TABLE 4-5 Trace Data with Query Signatures in Abbreviated Form

sig

duration

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 162009

WHERE orderdate = '#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 125007

WHERE orderdate = '#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 100005

WHERE orderdate = '#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 793045

WHERE orderdate >= '#' AND orderdate < '#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 835047

WHERE orderdate >= '#' AND orderdate < '#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 6507372

WHERE orderdate >= '#' AND orderdate < "#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 732041

WHERE orderdate >= '#' AND orderdate < '#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 143008

WHERE orderdate = '#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 181010

WHERE orderdate = '#';

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 102005

WHERE orderdate = '#';

As you can see, you get back query signatures, which you can use to aggregate the trace
data. Keep in mind, though, that query strings can get lengthy, and grouping the data by
lengthy strings is slow and expensive. Instead, you might prefer to generate an integer
checksum for each query string by using the T-SQL CHECKSUM function. For example, the
following query generates a checksum value for each query string from the Workload table:

SELECT
CHECKSUM(dbo.RegexReplace(tsql_code,
N"CI\s, (=<>!TC2HIANTT+INIIDD) (2= (2: (2: (74
D (IND?2C D) [A T DR (7
)| (7:0x[\da-fA-F]*) (?#
Y2 [=-+12(2: (2 [\dT*\. [\dT* | [\d]+) (?#
) (?:[eE1?[\d1*))) (?#
DI [~1?7[-+12(2: [\d19)) (7#
) (2 \sT?2INE\-\F\/\NB\&N\ INAT [\s1?2))+ (7#
n',
N'$1$2$3#%4')) AS cs,
duration
FROM dbo.Workload;

expression coming
character

binary

precise number
imprecise number
integer

operators

Chapter 4 Query Tuning 163

This query generates the following output, shown here in abbreviated form:

cs durat
-184235228 16200
-184235228 12500
-184235228 10000
368623506 79304
368623506 83504
368623506 65073
368623506 73204
-184235228 14300
-184235228 18101
-184235228 10200

ion
9
7
5
5
7
72
1
8
0
5

Use the following code to add to the Workload table a computed persisted column called cs
that calculates the checksum of the query signatures and create a clustered index on the cs

column:

ALTER TABLE dbo.Workload ADD cs AS CHECKSUM(dbo.RegexReplace(tsql_code,

N'([\s, (=<>!]
Y2 (IND? (!
)| (?:0x[\da-
DI [-+12(?
)(?:[eE]?[\d
2 [~1?7[-+
) (?:[\s]?[\
N,

N'$1$2$3#%4")

CREATE CLUSTERED

CUIANITFINIID) (2:(2:(2: (?# expression coming
DEIATTTTTD)EC) character

fA-F1*) (?# binary

(2 \d]*\.[\d]* | [\d]+) (?# precise number
1)) (?# imprecise number
17(7: [\d]+)) (?# integer
F\-\FN/\B\&N [\AT [\s1?))+ (7# operators

) PERSISTED;

INDEX idx_cl_cs ON dbo.Workload(cs);

Run the following code to return the new contents of the Workload table, shown in abbreviated

form in Table 4-6:

SELECT tsql_code,
FROM dbo.Workload

duration, cs

TABLE 4-6 Contents of Table Workload

tsql_code

SELECT orderid,
FROM dbo.Orders

SELECT orderid,
FROM dbo.Orders

SELECT orderid,
FROM dbo.Orders

SELECT orderid,
FROM dbo.Orders

custid, empid, shipperid, orderdate, filler
WHERE orderdate = '20080118';

custid, empid, shipperid, orderdate, filler
WHERE orderdate = '20080828"';

custid, empid, shipperid, orderdate, filler
WHERE orderdate = '20080212';

custid, empid, shipperid, orderdate, filler
WHERE orderdate = '20080118"';

duration

128007

102005

187010

119006

cs

-184235228

-184235228

-184235228

-184235228

164

Inside Microsoft SQL Server 2008: T-SQL Querying

TABLE 4-6 Contents of Table Workload

tsql_code

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders WHERE orderdate = '20080828';

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders WHERE orderdate >= '20080101'
AND orderdate < '20080201"';

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders WHERE orderdate >= '20080401'
AND orderdate < '20080501"';

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders WHERE orderdate >= '20080201'
AND orderdate < '20090301';

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders WHERE orderdate >= '20080501'
AND orderdate < '20080601';

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders WHERE orderdate >= '20080101'
AND orderdate < '20080201';

At this point, you want to aggregate the data by the query signature checksum. It would also be
very useful to get running aggregates of the percentage of each signature’s duration of the total

duration
118006

923052

879050

6340362

745042

812046

cs
-184235228

368623506

368623506

368623506

368623506

368623506

duration. This information can help you easily isolate the query patterns that you need to tune.

Remember that typical production workloads can contain a large number of query signatures. It
would make sense to populate a temporary table with the aggregate data and index it and then

run a query against the temporary table to calculate the running aggregates.

Run the following code to populate the temporary table #AggQueries with the total duration

per signature checksum, including the percentage of the total, and a row number based on

the duration in descending order:

IF OBJECT_ID('tempdb..#AggQueries', 'U') IS NOT NULL DROP TABLE #AggQueries;

SELECT cs, SUM(duration) AS total_duration,
100. * SUM(duration) / SUM(SUM(duration)) OVER() AS pct,
ROW_NUMBER() OVER(ORDER BY SUM(duration) DESC) AS rn
INTO #AggQueries
FROM dbo.Workload
GROUP BY cs;

CREATE CLUSTERED INDEX idx_cl_cs ON #AggQueries(cs);

Run the following code to return the contents of the temporary table:

SELECT cs, total_duration, pct, rn
FROM #AggQueries
ORDER BY rn;

Chapter 4 Query Tuning 165

This code generates the following output:

cs total_duration pct rn
368623506 89089077 95.773814372342239 1
-184235228 3928210 4.222960524729406 2
-1872968693 3000 0.003225102928353 3

Use the following query to return the running aggregates of the percentages, filtering only
those rows where the running percentage accumulates to a certain threshold that you specify:

SELECT AQl.cs,
CAST(AQL.total_duration / 1000000.

AS NUMERIC(12, 2)) AS total_s,
CAST(SUM(AQ2.total_duration) / 1000000.

AS NUMERIC(12, 2)) AS running_total_s,
CAST(AQl.pct AS NUMERIC(12, 2)) AS pct,
CAST(SUM(AQ2.pct) AS NUMERIC(12, 2)) AS run_pct,
AQl.rn

FROM #AggQueries AS AQl
JOIN #AggQueries AS AQ2
ON AQ2.rn <= AQl.rn
GROUP BY AQl.cs, AQl.total_duration, AQl.pct, AQl.rn
HAVING SUM(AQ2.pct) - AQl.pct <= 80 -- percentage threshold
-- OR AQl.rn <=5
ORDER BY AQl.rn;

In our case, if you use 80 percent as the threshold, you get only one row. For demonstration
purposes, | uncommented the part of the expression in the HAVING clause and got the
following output from the query:

cs total_s running_total_s pct run_pct rn
368623506 89.09 89.09 95.77 95.77 1
-184235228 3.93 93.02 4.22 100.00 2
-1872968693 0.00 93.02 0.00 100.00 3

You can see at the top that one query pattern accounts for 95.77 percent of the total
duration. Based on my experience, a handful of query patterns typically cause most of the
performance problems in a given system.

To get back the actual queries that you need to tune, you should join the result table
returned from the preceding query with the Workload table, based on a match in the
checksum value (cs column), like so:

WITH RunningTotals AS
(
SELECT AQl.cs,
CAST(AQL.total_duration / 1000.
AS DECIMAL(12, 2)) AS total_s,
CAST(SUM(AQ2.total_duration) / 1000.
AS DECIMAL(12, 2)) AS running_total_s,

166 Inside Microsoft SQL Server 2008: T-SQL Querying

CAST(AQl.pct AS DECIMAL(12, 2)) AS pct,
CAST(SUM(AQ2.pct) AS DECIMAL(12, 2)) AS run_pct,
AQl.rn
FROM #AggQueries AS AQl
JOIN #AggQueries AS AQ2
ON AQ2.rn <= AQl.rn
GROUP BY AQl.cs, AQl.total_duration, AQl.pct, AQl.rn
HAVING SUM(AQ2.pct) - AQl.pct <= 90 -- percentage threshold
-- OR AQl.rn <=5
)
SELECT RT.rn, RT.pct, W.tsql_code
FROM RunningTotals AS RT
JOIN dbo.Workload AS W
ON W.cs = RT.cs
ORDER BY RT.rn;

You will get the output shown in abbreviated form in Table 4-7.

TABLE 4-7 Top Slow Queries in Abbreviated Form

rn pct tsql_code
1 9577 SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080101' AND orderdate < '20080201';
1 95.77 SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080401' AND orderdate < '20080501';
1 9577 SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080201' AND orderdate < '20090301';

Of course, with a more realistic workload you might get a large number of queries back,
but you're really interested in the query pattern that you need to tune. So instead of joining
back to the Workload table, use the APPLY operator to return only one row for each query
signature with the query pattern and a single sample per pattern out of the actual queries
like so:

WITH RunningTotals AS
(
SELECT AQl.cs,
CAST(AQl.total_duration / 1000000.

AS NUMERIC(12, 2)) AS total_s,
CAST(SUM(AQ2.total_duration) / 1000000.

AS NUMERIC(12, 2)) AS running_total_s,
CAST(AQl.pct AS NUMERIC(12, 2)) AS pct,
CAST(SUM(AQ2.pct) AS NUMERIC(12, 2)) AS run_pct,
AQl.rn

FROM #AggQueries AS AQl
JOIN #AggQueries AS AQ2
ON AQ2.rn <= AQl.rn
GROUP BY AQl.cs, AQl.total_duration, AQl.pct, AQl.rn
HAVING SUM(CAQ2.pct) - AQl.pct <= 80 -- percentage threshold

Chapter 4 Query Tuning 167

SELECT RT.rn, RT.pct, S.sig, S.tsql_code AS sample_query
FROM RunningTotals AS RT
CROSS APPLY
(SELECT TOP(1) tsql_code, dbo.RegexReplace(tsql_code,
N"CI\s, (=<>!1T 2 [A\TT+I\1DDD(?2:(?:(?: (?# expression coming

D2 CND?2C D) [A T DO (7% character

)| (?:0x[\da-fA-F]*) (?# binary

Y2 [-+12C2: (2 [\dI*\. [\d]* | [\d]+) (?# precise number
)(?:[eE]?[\dI*))) (?# imprecise number
Y2 [~12[-+12C2: [\d]+)) (?# integer

2 (2 INST?INH\-\F\/\%\&\ I\AT[\s]1?)?)+(?# operators

n',

N'$1$2$3#$4') AS sig
FROM dbo.Workload AS W
WHERE W.cs = RT.cs) AS S
ORDER BY RT.rn;

You will get the output shown in Table 4-8.

TABLE 4-8 Signature and Sample of the Top Slow Queries

rn pct sig sample_query

1 9577 SELECT orderid, custid, empid, SELECT orderid, custid, empid,
shipperid, orderdate, filler shipperid, orderdate, filler
FROM dbo.Orders FROM dbo.Orders
WHERE orderdate >= '#' WHERE orderdate >= '20080101'
AND orderdate < '#'; AND orderdate < '20080201';

Now you can focus your tuning efforts on the query patterns that you got back—in our case,
only one. Of course, in a similar manner you can identify the query patterns that generate
the largest result sets, most of the /O, and so on.

Query Statistics

SQL Server 2008 provides a DMV called sys.dm_exec_query_stats that aggregates query
performance information for queries whose plans are in cache. Unlike the trace approach,
this DMV won't report any information for queries whose plans are not in cache (for example,
when procedures or queries use the RECOMPILE option). However, for queries whose plans
are in cache, you get very interesting performance information that is aggregated since the
query plan was cached. Needless to say, if the plan is removed from cache, this information is
gone. Note, though, that if you enable the system collection set "Query Statistics,” it collects
information from this DMV on regular intervals based on the collection frequency defined
for it and stores the information in the management data warehouse. You can also analyze
this information graphically with the preconfigured report Query Statistics History. (In Object
Explorer, right-click Data Collection under Management and choose Reports.) Of course, if
you want, you can also create your own jobs to collect information from this DMV with your
own queries.

168 Inside Microsoft SQL Server 2008: T-SQL Querying

The information that this view provides for each cached query plan includes, among other
things, the following:

A SQL handle that you can provide as input to the function sys.dm_exec_sql_text to get
the text of the parent query or batch of the current query. You also get the start and end
offsets of the query that the current row represents so that you can extract it from the
full parent query or batch text. Note that the offsets are zero based and are specified in
bytes, although the text is Unicode (meaning two bytes of storage per character).

A plan handle that you can provide as input to the function sys.dm_exec_query_plan to
get the XML form of the plan.

Creation time and last execution time.
Execution count.

Performance information including worker (CPU) time, physical reads, logical reads,
CLR time, and elapsed time. For each performance counter, you get the total for all
invocations of the plan, last, minimum and maximum.

A binary query hash and a binary plan hash. The former allows you to identify queries
with the same query signature, similar to the checksum value | suggested creating
earlier for traced data. The latter allows you to identify similar query execution plans.
Note that the query hash and plan hash values (query_hash and query_plan_hash
attributes) were introduced in SQL Server 2008, while all other attributes were also
available in SQL Server 2005.

For example, the following code identifies the five query patterns in the Performance database
with the highest total duration and returns the output shown in Table 4-9 in my system:

SELECT TOP (5)
MAX(query) AS sample_query,
SUM(execution_count) AS cnt,
SUM(total_worker_time) AS cpu,
SUM(total_physical_reads) AS reads,
SUM(total_Tlogical_reads) AS logical_reads,
SUM(total_elapsed_time) AS duration

FROM (SELECT

Qs.*,
SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,
((CASE statement_end_offset
WHEN -1 THEN DATALENGTH(ST.text)
ELSE QS.statement_end_offset END
- QS.statement_start_offset)/2) + 1
) AS query
FROM sys.dm_exec_query_stats AS QS
CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) AS ST
CROSS APPLY sys.dm_exec_plan_attributes(QS.plan_handle) AS PA
WHERE PA.attribute = 'dbid'
AND PA.value = DB_ID('Performance')) AS D

GROUP BY query_hash
ORDER BY duration DESC;

Chapter 4 Query Tuning 169

TABLE 4-9 Top Slow Queries Based on Query Stats

logical_
sample_query cnt cpu reads reads duration
SELECT orderid, custid, empid, 665 1926343195 47873 16606308 2786190354

shipperid, orderdate, filler
FROM dbo.Orders

WHERE orderdate >= '20080501'
AND orderdate < '20080601';

SELECT orderid, custid, empid, 501 129140379 1920 376180 195947201
shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080828"';

select dbo.SQLSig 4 31001772 1 120 31179782
(N'select * from tl

where coll = +
cast(n as nvarchar(11l)), 4000)
from dbo.nums where n <= 25000;

INSERT INTO Performance.dbo.WaitStats 62 996056 400 158352 25149438
(wait_type, waiting_tasks_count, wait_

time_ms, max_wait_time_ms, signal_wait_

time_ms)

SELECT DISTINCT RTRIM(wait_type)

AS wait_type, waiting_tasks_count,

wait_time_ms, max_wait_time_ms, signal_

wait_time_ms FROM sys.dm_os_wait_stats;

SELECT [orderid], [custid], [empid], 504 121006 360 2016 14790845
[shipperid], [orderdate], [filler] FROM
[dbo].[Orders] WHERE [orderid]=@1

Of course, you could use techniques | showed earlier to calculate running percents and filter
query patterns based on those.

Tune Indexes and Queries

Now that you know which patterns you need to tune, you can start with a more focused
query-tuning process. The process might involve index tuning or query code revisions, and
we will practice it thoroughly throughout the book. Or you might realize that the queries
are already tuned pretty well, in which case you would need to inspect other aspects of the
system (for example, hardware, database layout, and so on).

In our case, the tuning process is fairly simple. You need to create a clustered index on the
orderdate column:

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

Later in the chapter, I'll cover index tuning and explain why a clustered index is adequate for
query patterns such as the ones that our tuning process isolated.

170 Inside Microsoft SQL Server 2008: T-SQL Querying

To see the effect of adding the index, run the following code to start a new trace:

DECLARE @dbid AS INT, @traceid AS INT;
SET @dbid = DB_ID('Performance');

EXEC dbo.PerfworkloadTraceStart

@dbid = @dbid,
@tracefile = 'c:\temp\Perfworkload 20090212 - Tuned',
@traceid = @traceid OUTPUT;

When | ran this code, | got the following output showing that the trace ID generated is 2:
Trace ID: 2, Trace File: 'c:\temp\Perfworkload 20090212 - Tuned.trc'
Run the sample queries from Listing 4-2 again and then stop the trace:

EXEC sp_trace_setstatus 2, 0;
EXEC sp_trace_setstatus 2, 2;

Figure 4-5 shows the trace data loaded with Profiler.

SQL Server Profiler - [C\TemphPerfwarkload 20090212 - Tuned.trc]
= File Edit Wiew PReplay Tools Window Help
AN E S aQR 52 (=[] R | @
| EwentClass | TeuxtD ata ‘ Diuration ‘ CPU | Reads |W'rites | FowCounts | NTUseiMame | HostMame | Application
SOL:Batchiompleted SET NOCOUNT OM; US... 1] [u] 1] [u] o gGandalf ooao Microsos
SFiStmtCompleted SELECT cimns.column... B3F [u] 23 [u] & Gandalf ooao Microso
RPCiCompleted EXEC Sp_executesql ... 637 1} 93 1} 0 Gandalf jalwh]u] Microso
sqL:stmtCompleted SELECT orderid, cus... o [u] [[u] 1 Gandalf ooio Microso
SqlL:Batchiompleted SELECT orderid, cus... 234 [u] - [u] 1 Gandalf ooao Microsos
s0L:SstmtCompl eted SELECT orderid, Cus... 1] [u] [[u] 1 Gandalf ooao Microsos
sOL:Batchcompleted SELECT orderid, cus... o o 13 o 1 aGandalf poJo Microso”
S0L:stmtCompleted SELECT orderid, Cus... 1] [u] [[u] 1 gGandalf ooao Microsor
SqL:Batchlompleted SELECT orderid, cus... 1] [u] [[u] 1 Gandalf ooao Microsos
SOL:SstmtCompl eted SELECT orderid, Cus... &00 [u] 21 [u] 683 Gandalf ooao Microsos
s0L:BatchCompleted SELECT orderid, cus... 945 [u] 7 [u] 683 Gandalf ooao Microso
sOL:stmtCompleted SELECT orderid, cus... 00 u} 21 u} 688 Gandalf oooo Microsor
sqL:BatchCompleted SELECT orderid, cus... 982 [u] 27 [u] 685 Gandalf ooio Microso
SOl stmtCompl eted SELECT orderid, cCus... 274 [u] 21 [u] &7E Gandalf ooao Microsos
s0L:Batchiompleted SELECT orderid, cus... 457 15 7 [u] 675 Gandalf ooao Microsos
S0L:StmtCompleted SELECT orderid, cus... FE0 53 536 [u] zlz0® Gandalf ooJo Microso
sOL:BatchCompleted SELECT orderid, cus... 963 &3 G4z u} 21208 Gandalf oooo Microsor
SOl stmtCompl eted SELECT orderid, cus... 1076 1t czo [u] 20542 Gandalf ooao Microsos
SOL:Batchiompleted SELECT orderid, cus... 1192 15 52& [u] 20542 Gandalf ooao Microsos
Trace Stop
4 T
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.orders
HERE orderdate 'Z0080101"
AND orderdate ‘20080201 ;

FIGURE 4-5 Performance workload trace data after adding index

You can see that the duration and 1/O involved with the query pattern we tuned are greatly
reduced. Still, some queries generate a lot of network traffic. With those, you might want
to check whether some of the processing of their result sets could be achieved at the server
side, thus reducing the amount of data submitted through the network.

Chapter 4 Query Tuning 171

Tools for Query Tuning

This section provides an overview of the query-tuning tools that will be used throughout
these books, and it will focus on analyzing execution plans.

Cached Query Execution Plans

SQL Server 2008 provides several objects that you can query to analyze the behavior of
cached query execution plans:

B The sys.dm_exec_cached_plans DMV contains information about the cached query
execution plans, with a row per each cached plan.

B The sys.dm_exec_plan_attributes DMF contains one row per attribute associated with
the plan, whose handle is provided as input to the DMF.

B The sys.dm_exec_sql_text DMF returns the text associated with the query, whose handle
is provided as input to the DMF.

B The sys.dm_exec_query_plan DMF provides the XML form of the execution plan of the
query, whose handle is provided as input to the DMF.

SQL Server 2008 also provides you with a compatibility view called sys.syscacheobjects that
exposes cached query plan information the way it did in previous versions of SQL Server.

Clearing the Cache

When analyzing query performance, you sometimes need to clear the cache. SQL Server
provides you with tools to clear both data and execution plans from the cache. To clear data
from the cache globally, use the following command:

DBCC DROPCLEANBUFFERS;

To clear execution plans from the cache globally, use the following command:
DBCC FREEPROCCACHE;

To clear execution plans of a particular database, use the following command:
DBCC FLUSHPROCINDB(<db_id>);

Note that the DBCC FLUSHPROCINDB command is undocumented.

To clear execution plans of a particular cache store, use the following command:
DBCC FREESYSTEMCACHE (<cachestore>);

You can specify the following values as input: ‘ALL’, pool_name, ‘Object Plans’, 'SQL Plans’,
‘Bound Trees’. Note that the last three options are undocumented. The ‘ALL’ option indicates

172

Inside Microsoft SQL Server 2008: T-SQL Querying

that you want to clear all supported caches. The pool_name value indicates the name of a
Resource Governor pool cache that you want to clear. For the undocumented options, specify
‘Object Plans’ to clear object plans (plans for stored procedures, triggers, and user-defined
functions). Specify ‘SQL Plans’ to clear plans for ad-hoc statements, including prepared
statements. Specify ‘Bound Trees’ to clear plans for views, constraints, and defaults.

Caution Consider carefully before using these commands in production environments.
Obviously, clearing the cache has a performance impact on the system. After clearing the data
cache, SQL Server needs to physically read pages accessed for the first time from disk. After
clearing execution plans from the cache, SQL Server needs to generate new execution plans for
queries. Also, be sure that you are aware of the impact of clearing the cache even when doing so
in development or test environments.

Dynamic Management Objects

SQL Server 2005 introduced for the first time support for dynamic management objects,
including DMVs and DMFs. SQL Server 2008 added new objects and in some cases added
new attributes to existing objects. These contain extremely useful information about the
server that you can use to monitor SQL Server, diagnose problems, and tune performance.
Much of the information provided by these views and functions has never before been
available. Studying them in detail is time very well spent. In these books, | make use of the
ones that are relevant to my discussions, but | urge you to take a close look at others as well.
You can find information about them in SQL Server Books Online.

STATISTICS 10

STATISTICS 10 is a session option used extensively throughout these books. It returns
I/O-related information about the statements that you run. To demonstrate its use, first
clear the data cache:

DBCC DROPCLEANBUFFERS;
Then run the following code to turn the session option on and invoke a query:
SET STATISTICS IO ON;
SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate >= '20060101'
AND orderdate < '20060201';

You should get output similar to the following:

Table 'Orders'. Scan count 1, Tlogical reads 536, physical reads 3, read-ahead reads 548, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Chapter 4 Query Tuning 173

The output tells you how many times the table was accessed in the plan (Scan count); how

many reads from cache were involved (logical reads); how many reads from disk were involved
(physical reads and read-ahead reads); and similarly, how many logical and physical reads related
to large objects were involved (lob logical reads, lob physical reads, lob read-ahead reads).

Run the following code to turn the session option off:

SET STATISTICS IO OFF;

Measuring the Run Time of Queries

STATISTICS TIME is a session option that returns the net CPU and elapsed clock time information
about the statements that you run. It returns this information for both the time it took to parse
and compile the query and the time it took to execute it. To demonstrate the use of this session
option, first clear both the data and execution plans from cache:

DBCC DROPCLEANBUFFERS;
DBCC FREEPROCCACHE;

Run the following code to turn the session option on:

SET STATISTICS TIME ON;

Then invoke the following query:

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderdate >= '20060101'

AND orderdate < '20060201';

You will get output similar to the following:

SQL Server parse and compile time:

CPU time = 0 ms, elapsed time = 64 ms.
SQL Server parse and compile time:

CPU time = 0 ms, elapsed time = 1 ms.

SQL Server Execution Times:
CPU time = 31 ms, elapsed time = 711 ms.

The output tells you the net CPU time and elapsed clock time for parsing and compiling the
query and also the time it took to execute it. Run the following code to turn the option off:

SET STATISTICS TIME OFF;

This tool is convenient when you want to analyze the performance of an individual query
interactively. When you run benchmarks in batch mode, the way to measure the run time of
queries is different. Store the value of the SYSDATETIME function in a variable directly before
the query. Directly after the query, issue an INSERT statement into the table where you collect

174

Inside Microsoft SQL Server 2008: T-SQL Querying

performance information, subtracting the value stored in the variable from the current value of
SYSDATETIME. Note that SYSDATETIME returns a DATETIME2 value, which has an accuracy level
of 100 nanoseconds; however, the actual accuracy of the function depends on the computer
hardware and version of Windows your SQL Server instance is running on. That's because the
SYSDATETIME function internally invokes the GetSystemTimeAsFileTime() Windows API, which
is hardware and operating system dependent. When measuring the time statistics of queries
for which the accuracy level of this function is insufficient, run the queries repeatedly in a loop
and divide run time for the entire loop by the number of iterations.

Analyzing Execution Plans

An execution plan is the “work plan” the optimizer generates to determine how to process a
given query. The plan contains operators that are generally applied in a specific order. Some
operators can be applied while their preceding operator is still in progress. Some operators
might be applied more than once. Also, some branches of the plan are invoked in parallel if
the optimizer chose a parallel plan. In the plan, the optimizer determines the order in which
to access the tables involved in the query, which indexes to use and which access methods to
use to apply to them, which join algorithms to use, and so on. In fact, for a given query the
optimizer considers multiple execution plans, and it chooses the plan with the lowest cost
out of the ones that were generated. Note that SQL Server might not generate all possible
execution plans for a given query. If it always did, the optimization process could take too
long. SQL Server will calculate thresholds for the optimization process based on the sizes of
the tables involved in the query, among other things. One threshold is time based. SQL Server
won't spend longer than the time threshold on optimization. Another threshold is cost based.
That is, if a plan is found with a lower cost than the cost threshold, it is considered “good
enough,” in which case optimization stops and that plan is used.

Throughout these books, I'll frequently analyze execution plans of queries. This section and
the one that follows (“Index Tuning”) should give you the background required to follow

and understand the discussions involving plan analysis. Note that the purpose of this section
is not to familiarize you with all possible operators; instead, it is to familiarize you with the
techniques to analyze plans. The “Index Tuning” section will familiarize you with index-related
operators, and later in the book I'll elaborate on additional operators—for example,
join-related operators will be described in Chapter 7, “Joins and Set Operations.”

Graphical Execution Plans

Graphical execution plans are used extensively throughout these books. SSMS allows you
both to get an estimated execution plan (by pressing Ctrl+L) and to include an actual one
(by pressing Ctrl+M) along with the output of the query you run. Note that both will typically
give you the same plan; remember that an execution plan is generated before the query is
run. However, when you request an estimated plan, the query is not run at all. Obviously,
some measures can be collected only at run time (for example, the actual number of rows

Chapter 4 Query Tuning 175

returned from each operator and the number of executions of the operator). In the estimated
plan, you will see estimations for measures that can be collected only at run time, while the
actual plan will show the actuals and also some of the same estimates.

To demonstrate a graphical execution plan analysis, | will use the following query:

SELECT custid, empid, shipperid, COUNT(*) AS numorders
FROM dbo.Orders
WHERE orderdate >= '20080201"'
AND orderdate < '20080301'
GROUP BY CUBE(custid, empid, shipperid);

The query returns aggregated counts of orders for all possible grouping sets that can be
defined based on the attributes custid, empid, and shipperid. I'll discuss the CUBE subclause of
the GROUP BY clause in detail in Chapter 8, "Aggregating and Pivoting Data.”

Note | did some graphical manipulation on the execution plans that appear in this chapter to fit
images in the printed pages and for clarity.

As an example, if you request an estimated execution plan for the preceding query, you will
get the plan shown in Figure 4-6.

“5 Microsoft SQL Server Managerent Studio
File Edit VWiew Query Project Debug Tools “Window Community Help
A MewQuey | [y [Bt [5 H I E

17 | Performance = 0 Execute B v i3 Igu 37 iy Q_;j

Chapter 04 - Query Tuning.sq...If (531)

2

20080201

AND orderdate < ‘20080301’
ROUP BY CUBE(custid, empid,

4 mm

_Ij Meszages E'“ Execution plan

1810 dx3 193160 ¢

Query 1: Query cost (relative to the batch): 100%
SELECT custid, empid, shipperid, COUNT(®*) AS numorders FROM dbo.or

3T 3E
T T
: bt bE i

Concatenation Stream Aggregate Stream Aggregate Sort
o froems et (Aggregate) : :
Cost: 0 % Estimated Number of Rows 199064 | ool 0 % Cost: 29 %
Estimated Row Size 5B ’
Estimated Data Size 631 KR sz sz
5 $e %2
Compute Scalar Stream Aggregate Stream Aggregate
Cost: 0 % (Aggregate) (Aggregatel
Cost: O % Cost: 0 %
}E ¥
= 3 -
Stream Aggregate Stream Aggregate
Corr&p;istte. SOCE;; ar [Aggregate) (Aggregatel
. Cost: 0 % Cost: 0 %

FIGURE 4-6 Estimated execution plan example

176 Inside Microsoft SQL Server 2008: T-SQL Querying

Notice that when you place your mouse pointer over an arrow that goes out of an operator
(for example, the one going out of the second Stream Aggregate operator), you get an
estimated number of rows. By the way, a nice aspect of the arrows representing data flow is
that their thickness is proportional to the number of rows returned by the source operator.
You want to keep an eye especially on thick arrows, as these might indicate a performance

issue.

Next, turn on the Include Actual Execution Plan option and run the query. You will get both
the output of the query and the actual plan, as shown in Figure 4-7.

“5 Microsoft SOL Server Managernent Studio
Eile Edit View Query Project Debug Tools MWindow Community Help
S Newouery | [y [BRth G| EHS | E
1z | Performance v ¥ Execute b vy ;',j ==l EaR-E] B
Chapter 04 - Query Tuning.sq...lf (331)
SELECT custid, empid, shipperid, COUNT(*) AS numarders
FROM dbo.orders
WHERE orderdate »>= '20080201'
AND orderdate < '20080301'
GROUF BY CUBE(custid, empid, shipperid);

1a10/dx3 128(00 ¢

< m

7 Results | |3 Messages 2" Ewecution plan
Query 1: Query cost (relative to the batch): 100%
SELECT custid, empid, shipperid, COUNT(®*) AS numorders FROM dbo.or

L |
Concatenation Str‘;enam Aggrleg\ate Stream Aggregate Sort
Cost: 0 % Actual Number of Rows 22364 (éggzeggt%) Cost: 29 %
Estimated Mumber of Rows 19916.4
Estimated Row Size EN Y iz 1
Estimated Data Size 6BLKE #5% 15%
STream Aggregate Stream Aggregate
Comcpoustte_ Soci/J ar (Aggregate) (Aggregatel
: Cost: O % Cost: 0 %
¥)T
= 3 Iz
Compute JSC&['Iar Stream Aggregate Stream Aggregate
Cost: 0 % [Aggregate) (Aggregatel
) Cost: 0 % Cost: 0 %

FIGURE 4-7 Actual execution plan example

Notice that now you get the actual number of rows returned by the source operator.

When you get elaborated plans like this one that do not fit in one screen, you can use a really
cool zooming feature. Press the plus sign (+) button that appears at the bottom right corner
of the execution plan pane, and you will get a rectangle that allows you to navigate to a
desired place in the plan, as shown in Figure 4-8.

Figure 4-9 shows the full execution plan for our query—that'’s after some graphical
manipulation for clarity and to make it fit in one screen.

Chapter 4 Query Tuning

3 2% | @ REn %k
- % [l
rid, COUNT(*) AS numorders =
“lg
1 =
o
o)
* l.ﬂ = »
to the batch): 100%
id, COUNT(*) AS numorders FROM dbo.oOrders WHERE orderdate »>=..
JE IE =
i3 $ T E
Stream Aggregate Stream Aggregate Sort Table
CAggregate) (Aggregatel N o (Eager
Cost: 0 % Cost: 0 % Cost: 29 % Cost:
i iz
15; 155
b Stream Aggregate Stream Aggregate
Con;:p:)usts. Soca;gar“ (Agaregate) (Agaregate) e
: Cost: 0% Cost: 0%
— B i
— Stream A)Sgr“egate Stream A)Sgr'eg'
Compute Scalar N
i (Agaregate) (Agaregate)
Cost: 0% Cost: 0% Cost: 0%

T

| DOJCNSOLEE (10.0 RTM) | DOJO\Gandalf (53) | Performance | 0000

FIGURE 4-8 Zooming feature in graphical showplan

Query 1: Query cost (relative to the batch): 100%
SELECT custid, empid, shipperid, COUNT(*) AS numorders FROM dbo.order

! Jﬁl

Clustered Index Seelk {C1.
r [Orders]. [1dx_cl_od]

Cost: 9 %

=he 3z
=)3 = q
=) Az ,‘;T| -

- Stream Aggregate Stream Aggregate Sort Table Spool -
Caggregate) Caggregate) costs 79 % (Fager Spool)
Cost: O % Cost: 0 % : Cost: O 3%
iz T =
= E $: I |l :
> Stream Aggregate - Stream Aggregate able Spoo
Comcpglstte. Soca;;ar (Aggregate) (Aaggregate) Cosi?r;} o (Eager Spool)
. Cost: O % Cost: O % . Cost: 3 %
b3 DT ==
0 ik L 3| . b 1
Stream Agagregate . Stream Aggregate Taple Spoo
Compute Scagar (Aggregate) (Aggregate) Sort - tEager spool)
Cost: D% Cost: 29 % o
. Cost: 0 % Cost: O % Cost: 3 %
E] =
Compute Scalar Concatenation -
Cost: D% Cost: 0%

FIGURE 4-9 Execution plan for CUBE query

177

178 Inside Microsoft SQL Server 2008: T-SQL Querying

| shifted the position of some of the operators and added arrows to denote the original flow.
Also, | included the full object names where relevant. In the original plan, object names are
truncated if they are long.

A plan is a tree of operators. Data flows from a child operator to a parent operator. The tree
order of graphical plans that you get in SSMS is expressed from right to left and from top to
bottom. That's typically the order in which you should analyze a plan to figure out the flow of
activity. In our case, the Clustered Index Seek operator is the first operator that starts the flow,
yielding its output to the next operator in the tree—Table Spool (Eager Spool)—and so on.

Notice the cost percentage associated with each operator. This value is the percentage of the
operator’s cost out of the total cost of the query, as estimated by the optimizer. You want

to keep an eye especially on operators that involve high-percentage values and focus your
tuning efforts on those operators. When you place your mouse pointer over an operator, you
will get a yellow information box. One of the measures you will find there is called Estimated
Subtree Cost. This value represents the cumulative estimated cost of the subtree, starting
with the current operator (all operators in all branches leading to the current operator). The
subtree cost associated with the root operator (topmost, leftmost) represents the estimated
cost of the whole query, as shown in Figure 4-10.

Query 1: qQuery cost (relative to the batch): 100%
SELECT custid, empid, shipperid, COUNT(*) AS numorders FROM dbo.Order

?Z
=] = -} I
Compute Scalar Concatenation Stream Aggregate stre.
Cost: 0% (Aggregate) 4
SELECT Cost: 0 % C
Cached plan size 40 B
Degree of Parallelism 1 1
Memory Grant 1512 Compute ﬁsca] ar Streal
Estimated Operator Cost 11 0% Cost: 0 % (AQ
Estimated Subtree Cost 450815 Cc
Estimated Number of Rows 19916.4
Statement j'
SELECT custid, empid, shipperid, COUNT Compute Scalar Strea
%) A% numarders Cost: 0% (AQ
FROM dbo.Orders ce
WHERE orderdate »= '20080201"
AMND orderdate < '20080201"
GROUP BY CUBE(custi, ernpid,
shipperid);

FIGURE 4-10 Subtree cost

Note that you shouldn’t expect a direct correlation between a query’s subtree cost and

its actual run time. The query cost value is used by the optimizer to compare with other
query plans. Given two query plans that the optimizer generates, it tries to come up with a
lower-cost value for the plan that is supposed to run faster.

Another nice feature of graphical execution plans is that you can easily compare the costs
of multiple queries. You can use this feature to compare the costs of different queries

Chapter 4 Query Tuning 179

that produce the same result. For example, suppose you want to compare the costs of the
following queries:

SELECT custid, orderid, orderdate, empid, filler
FROM dbo.Orders AS 01
WHERE orderid =

(SELECT TOP (1) 02.orderid

FROM dbo.Orders AS 02

WHERE 02.custid = Ol.custid

ORDER BY 02.orderdate DESC, 02.orderid DESQC);

SELECT custid, orderid, orderdate, empid, filler
FROM dbo.Orders
WHERE orderid IN

(
SELECT
(SELECT TOP (1) O.orderid
FROM dbo.Orders AS O
WHERE O.custid = C.custid
ORDER BY 0O.orderdate DESC, O.orderid DESC) AS oid
FROM dbo.Customers AS C
);
SELECT A.*

FROM dbo.Customers AS C
CROSS APPLY
(SELECT TOP (1)
0O.custid, O.orderid, O.orderdate, O.empid, 0.filler
FROM dbo.Orders AS O
WHERE O.custid = C.custid
ORDER BY 0O.orderdate DESC, O.orderid DESC) AS A;

WITH C AS
(
SELECT custid, orderid, orderdate, empid, filler,
ROW_NUMBER() OVER(PARTITION BY custid
ORDER BY orderdate DESC, orderid DESC) AS n
FROM dbo.Orders

)

SELECT custid, orderid, orderdate, empid, filler
FROM C

WHERE n = 1;

You highlight the queries that you want to compare and request a graphical execution plan
(estimated or actual, as needed). In our case, you get the plans shown in Figure 4-11.

At the top of each plan, you get the percentage of the estimated cost of the query out of the
whole batch. For example, in our case, you get 37% for Query 1, 19% for Query 2, 30% for
Query 3, and 14% for Query 4.

When you place your mouse pointer over an operator, you get a yellow ToolTip box with
information about the operator, as shown in Figure 4-12.

180

Inside Microsoft SQL Server 2008: T-SQL Querying

Query 1: qQuery cost (relative to the batch): 37%
SELECT custid, orderid, orderdate, empid, filler FROM dbo.Orders AS (

= 3 tc] 5]
Filter Mested Loops Clustered Index Scan (C1..
Cost: 0 % (Inner Join) [orders].[idx_cl_od] [01]
" Lk Y l o o m e

4 I}

Query 2: Query cost (relative to the batch): 19%
SELECT custid, orderid, orderdate, empid, filler FROM dbo.Orders WHEF

= -4 fe] fg]
SELECT Farallelism Mested Loops Mested Loops
e te AW (Gather Streams) (Inner Join) (Inner Join} {l
f i

Query 3: Query cost (relative to the batch): 30%
SELECT A.* FROM dbo.Customers AS C CROSS APPLY (SELECT ToP (1) 0O.cust

=1 ic] ks

SELECT Nested Loops Clustered Index Scan (C1..
Cost: 0% (Inner Joind [Customers].[PK_Customer..
) ° Cost: 0% Cost: 0%

Query 4: Query cost (relative to the batch): 14%
WITH C A5 (SELECT custid, orderid, orderdate, empid, filler, ROW_NUI
- - - =

Parallelism

F Parallelism SeqL
COSSE#:ECJ% (Gather Streams) Ccl):;g:teor% (Distribute Streams) (Con
Cost: O % Cost: 8 % '
FIGURE 4-11 Comparing costs of execution plans
-
to] (53]
Mested Loops Clustered Index Scan (1.
(Inner Join) [Customers] . [PK_Customer
Cost: 0% Cost: 0 %
S Sort
[| Sort the input, @ﬂl
Sort fered Index Scar
(Top N Sort] Physical Operation Sort fers] . [1dx_c1_od
Cost: 50 % Logical Operation Top M Sort Cost: 4 %
Actual Number of Rows 20000
Estimated IfO Cost 0.0112513
Estimated CPU Cost 0.00053948
Estim ated Number of Executions 20000
Mumber of Executions 20000
Estimated Operator Cost 236,02 (50%)
Estimated Subtree Cost 474,203
Estim ated Number of Rows 1
Estim ated Row Size 180E
Actual Rebinds 20000
Actual Rewinds]
Node ID 2z
Output List
[Performance].[dba].[Orders].arderid, [Performance].
[dba].[Orders].custid, [Performance].[dba].
[Orders].empid, [Perfarmance].[dbo].
[Orders].arderdate, [Performance].[dba].
[Orders].filler
i Order By
ully. [Perfarmance].[dba]. [Orders].orderdate Descending, L08 (10.0 RTM) | DOJOYG:
[Perfarmance][dba]. [Crders].orderid Descending

FIGURE 4-12 Operator information ToolTip box

Chapter 4 Query Tuning 181

The information box gives you the following information:

The operator’s name and a short description of its function.
Physical Operation The physical operation that will take place in the engine.

Logical Operation The logical operation according to Microsoft's conceptual model
of query processing. For example, for a join operator you get the join algorithm used
as the physical operation (Nested Loops, Merge, Hash) and the logical join type used
as the logical operation (Inner Join, Outer Join, Semi Join, and so on). When no logical
operation is associated with the operator, this measure will have the same value as
shown in the physical operation.

Actual Number of Rows The actual number of rows returned from the operator
(shown only for actual plans).

Estimated 1/0 Cost, and Estimated CPU Cost The estimated part of the operator’s
cost associated with that particular resource (I/O or CPU). These measures help you
identify whether the operator is I/O or CPU intensive. For example, you can see that the
current Sort operator is mainly 1/0 bound.

Estimated Number of Executions and Number of Executions The number of times
this operator is estimated to be executed and the number of times this operator was
executed in practice. These measures are important because they can help you identify
suboptimal choices made by the optimizer when you find big differences between the
two. These measures were available in the graphical execution plans provided by SQL
Server 2000 Query Analyzer but were not provided by SSMS 2005. Fortunately, they
were added back in SSMS 2008.

Estimated Operator Cost The cost associated with the particular operator.

Estimated Subtree Cost As described earlier, the cumulative cost associated with the
whole subtree up to the current node.

Estimated Number of Rows The number of rows estimated to be returned from

this operator. In some cases, you can identify costing problems related to insufficient
statistics or to other reasons by observing a discrepancy between the actual number of
rows and the estimated number.

Estimated Row Size You might wonder why an actual value for this number is not
shown in the actual query plan. The reason is that you might have dynamic-length
attribute types in your table with rows that vary in size.

Actual Rebinds and Actual Rewinds These measures are relevant only to certain
operators (Nonclustered Index Spool, Remote Query, Row Count Spool, Sort, Table Spool,
Table-valued Function, and in some cases Assert and Filter). Also, with those operators,
these measures are applicable only when they appear as the inner side of a Nested Loops
join; otherwise, Rebinds will show 1, and Rewinds will show 0. These measures refer to the
number of times that an internal /Init method is called. The sum of the number of rebinds
and rewinds should be equal to the number of rows processed on the outer side of the join.

182

Inside Microsoft SQL Server 2008: T-SQL Querying

A rebind means that one or more of the correlated parameters of the join changed and the
inner side must be reevaluated. A rewind means that none of the correlated parameters
changed and that the prior inner result set might be reused.

B Bottom part of the information box Shows other aspects related to the operator,

such as the associated object name, output, arguments, and so on.

You can get more detailed coverage of the properties of an operator in the Properties
window (by pressing F4), as shown in Figure 4-13.

Coverage of graphical execution plans continues in the “Index Tuning” section when | discuss
index access methods.

« % | Properties > 1 X

Stream Aggregate -
= |2

(*) AS numorders

)i
Group By [Performance].[dbal.[Orders]shipperid, [Pt
b
Qutput List [Performance].[dbo].[Orders].custid, [Perfo
tch): 100%
*Y AS numorders FROM dbo..
:l:? = || [E Rollup Information
YL
n 0,1,23]

Rollup Levels
All levels of grouping attributes cormputed in this rallup,

-

Compute"Sca1ar
Cost: 0%

= il
FIGURE 4-13 Properties window

Textual Showplans

SQL Server gives you tools in the form of SET options to get an execution plan as text. Note,
though, that those SET options are scheduled for deprecation in a future version of SQL
Server and are provided in SQL Server 2008 for backward compatibility. You should start
getting used to using the SET options that provide the plan information in XML form instead;
I'll describe those options in the next section. For the sake of completeness | will describe
the textual showplan options as well. For example, if you turn the SHOWPLAN_TEXT session
option on, when you run a query, SQL Server doesn't process it. Rather, it just generates

Chapter 4 Query Tuning 183

an execution plan and returns it as text. To demonstrate this session option, turn it on by
running the following code:

SET SHOWPLAN_TEXT ON;
Then invoke the query in Listing 4-4:

LISTING 4-4 Sample query to test showplan options

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders
WHERE orderid = 280885;

You will get the following output:

| --Nested Loops(Inner Join, OUTER REFERENCES:([Uniql002],
[Performance].[dbo].[Orders].[orderdate]))
| --Index Seek(OBJECT: ([Performance].[dbo].[Orders].[PK_Orders]),
SEEK: ([Performance].[dbo].[Orders].[orderid]=[@1]) ORDERED FORWARD)
|--Clustered Index Seek(OBJECT: ([Performance].[dbo].[Orders].[idx_c1_od]),
SEEK: ([Performance] . [dbo].[Orders].[orderdate]=
[Performance] . [dbo].[Orders].[orderdate]
AND [Uniql002]=[Uniql1002]) LOOKUP ORDERED FORWARD)

To analyze the plan, you “read” or “follow” branches in inner levels before outer ones
(bottom to top) and branches that appear in the same level from top to bottom. As you can
see, you get only the operator names and their basic arguments. Run the following code to
turn the session option off:

SET SHOWPLAN_TEXT OFF;

If you want more detailed information about the plan that is similar to what the graphical
execution plan gives you, use the SHOWPLAN_ALL session option for an estimated plan and
the STATISTICS PROFILE session option for the actual one. SHOWPLAN_ALL will produce

a table result, with the information provided by SHOWPLAN_TEXT, and also the following
measures: StmtText, Stmtld, Nodeld, Parent, PhysicalOp, LogicalOp, Argument, DefinedValues,
EstimateRows, EstimatelO, EstimateCPU, AvgRowsSize, TotalSubtreeCost, OutputList,
Warnings, Type, Parallel, and EstimateExecutions.

To test this session option, turn it on:
SET SHOWPLAN_ALL ON;
Run the query in Listing 4-4 and examine the result. When you're done, turn it off:

SET SHOWPLAN_ALL OFF;

The STATISTICS PROFILE option produces an actual plan. The query runs, and its output is
produced. You also get the output returned by SHOWPLAN_ALL. In addition, you get the

184 Inside Microsoft SQL Server 2008: T-SQL Querying

attributes Rows and Executes, which hold actual values as opposed to estimated ones. To test
this session option, turn it on:

SET STATISTICS PROFILE ON;

Run the query in Listing 4-4 and examine the result. When you're done, turn it off:

SET STATISTICS PROFILE OFF;

XML Showplans

If you want to develop your own code that parses and analyzes execution plan information or if
you want to analyze execution plan information sent to you by a customer or a colleague, you will
find the information returned by the textual showplan options very hard to work with. SQL Server
2008 provides two session options that allow you to get estimated and actual execution plan
information in XML format; XML data is much more convenient for an application code to parse
and work with. Also, when clicking an XML value produced by one of the XML showplan options
in SSMS 2008 or when opening a file with an XML showplan saved with a .sglplan extension,
SSMS parses the information and presents it as a graphical execution plan. The SHOWPLAN_
XML session option will produce an XML value with the estimated plan information, and the
STATISTICS XML session option will produce a value with actual plan information.

To test SHOWPLAN_XML, turn it on by running the following code:

SET SHOWPLAN_XML ON;

Then run the query in Listing 4-4. You will get the XML form of the estimated execution plan.

To have SSMS parse and present the XML information graphically, simply click the XML value.
Figure 4-14 shows an example of graphical depiction of the XML showplan.

o Microsoft SQL Server Managernent Studio
File Edit ¥iew Project Debug Tools Window Community Help

S NewQuene | [y 0B By | B HS | E -

i _ ExecutionPlanlsqlplan® | Chapter 04 - Queny Tuning.sq..If (52)
2 qQuery 1: qQuery cost (relative to the batch): 10(
Z | SELECT orderid, custid, empid, shipperid, orderc
m
O - L
s = tc] x]
g Nested Loops Index Seek (NonClustered)
(Tnner 1oin) [orders]. [PK_Orders]
Cost: 0% Cost: 50 %
SELECT ;
Cached plan size 16 B key Lookup (Clustered)
Estimated Operator Cost 0 (0%) [orders]. [idx_cl_od]
Estimated Subtree Cost 0.0065704 Cost: 50 %
Estimated Number of Rows 1

Statement

SELECT orderid, custid, ernpid, shipperid,
orderdate, filler

FROM dbo,Orders

WYHERE orderid = 280885;

FIGURE 4-14 XML plan example

Chapter 4 Query Tuning 185

Run the following code to turn the session option off:

SET SHOWPLAN_XML OFF;

As | mentioned earlier, to get an XML value with information about the actual execution plan,
use the STATISTICS XML session option as follows:

SET STATISTICS XML ON;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler
FROM dbo.Orders

WHERE orderid = 280885;

GO

SET STATISTICS XML OFF;

If you want customers or colleagues to send you an estimated or actual showplan, instruct
them to save the XML value in a file with the extension .sglplan, and when you open this file
in SSMS, it automatically parses and presents it graphically.

Note also that the XML showplans provide the richest form of execution plan information.
Some attributes of the plan appear only in this form and not in the textual or graphical
forms, including information about missing indexes, whether the plan is trivial, the actual
degree of parallelism used by the query, actual memory grant, and more.

Hints

Hints allow you to override the default behavior of SQL Server in different respects, and SQL
Server will comply with your request when technically possible. The term hint is a misnomer
because it's not a kind gesture that SQL Server might or might not comply with; rather, you're
forcing SQL Server to apply a certain behavior when it's technically possible. Syntactically,
there are three types of hints: join hints, query hints, and table hints. Join hints are specified
between the keyword representing the join type and the JOIN keyword (for example, INNER
MERGE JOIN). Query hints are specified in an OPTION clause following the query itself (for
example, SELECT ... OPTION (OPTIMIZE FOR (@od = '99991231’)). Table hints are specified
right after a table name or alias in a WITH clause (for example, FROM dbo.Orders WITH (index
= idx_unc_od_oid_i_cid_eid)).

Hints can be classified in different categories based on their functionality, including

index hints, join hints, parallelism, locking, compilation, and others. Keep in mind that
performance-related hints, such as forcing the usage of a certain index, make that particular
aspect of the optimization static. When data distribution in the queried tables changes, the
optimizer doesn't consult statistics to determine whether it is worthwhile to use the index
because you forced it to always use it. You lose the benefit in cost-based optimization that
SQL Server’s optimizer gives you. Make sure that you use performance-related hints in
production code only after exhausting all other means, including query revisions, ensuring
that statistics are up to date, have a sufficient sampling rate, and so on.

186

Inside Microsoft SQL Server 2008: T-SQL Querying

| consider the USE PLAN query hint to be the ultimate hint. This hint allows you to provide

an XML value holding complete execution plan information to force the optimizer to use the
plan that you provided. You can use the SHOWPLAN_XML or STATISTICS XML session options
to generate an XML plan in a controlled environment and then specify the XML value under
the USE PLAN hint like so:

<query> OPTION(USE PLAN N'<xml_plan_goes_here>");

As an example, run the following code to produce an XML showplan for a query in a
controlled environment:

SET SHOWPLAN_XML ON;

GO

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders

WHERE orderid >= 2147483647;

GO

SET SHOWPLAN_XML OFF;

Then run the query, providing the XML plan value in the USE PLAN hint like so:

DECLARE @oid AS INT;
SET @oid = 1000000;

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders

WHERE orderid >= @oid

OPTION (USE PLAN N'<xml_plan_goes_here>");

SQL Server 2008 also supports a plan guide feature that allows you to associate an XML plan
or other hints to a query when you cannot or do not want to change the query’s text directly
by adding hints. You use the stored procedure sp_create_plan_guide to produce a plan guide
for a query. You can find more details about this in SQL Server Books Online. | will use hints
in several occasions in these books and explain them in context.

Traces/Profiler

The tracing capabilities of SQL Server give you extremely powerful tools for tuning and for
other purposes as well. One of the great benefits tracing has over other external tools is that
you get information about events that took place within the server in various components.
Tracing allows you to troubleshoot performance problems, application behavior, deadlocks,
audit information, and so much more. | demonstrated using traces for collecting performance
workload data earlier in the book. Make sure you go over the guidelines for tracing that

| provided earlier. I'll also demonstrate tracing to troubleshoot deadlocks in Inside T-SQL
Programming.

Chapter 4 Query Tuning 187

Database Engine Tuning Advisor

The Database Engine Tuning Advisor (DTA) is a tool that can give you physical design
recommendations (indexes, partitioning) based on an analysis of a workload that you give

it as input. The input can be a trace file or table, a script file containing T-SQL queries, or

an XML input file. One benefit of DTA is that it uses SQL Server's optimizer to make cost
estimations—the same optimizer that generates execution plans for your queries. DTA
generates statistics and hypothetical indexes, which it uses in its cost estimations. SQL Server
2008 introduces support for filtered indexes that I'll discuss later in the chapter. Besides
providing recommendations for regular indexes, indexed views, and partitioning, DTA in SQL
Server 2008 also provides recommendations for filtered indexes, among other enhancements.
Note that you can run DTA in batch mode by using the dta.exe command-line utility.

Data Collection and Management Data Warehouse

As | mentioned earlier in the chapter, SQL Server 2008 introduces a data collection platform
that enables you to collect performance and other information and store it in a management
data warehouse for later analysis. One of the main components of the data collection platform
is the data collector, which collects data from a variety of sources that are defined as data
collection targets and stores it in the management data warehouse. The data collector installs
three system data collection sets that collect performance-related information including disk
usage, server activity, and query statistics information. Object Explorer in SSMS has a folder
called Management through which you can configure the management data warehouse,
enable data collection and the system collection sets, and analyze the collected performance
information using predefined reports.

Using SMO to Clone Statistics

Query performance problems can evolve because of inaccurate selectivity estimates made
by the optimizer based on the existing distribution statistics (histograms). However, you
can't always duplicate the production data in your test environment to try to reproduce
the problems. In such a case you will probably find it convenient to be able to clone the
production statistics into your test environment without cloning the data. You can achieve
this by using the scripting capabilities of the SQL Server Management Objects (SMO) API,
specifically, the ScriptingOptions.OptimizerData property.

Index Tuning

This section covers index tuning, which is an important facet of query tuning. Indexes are
sorting and searching structures. They reduce the need for I/O when looking for data and for
sorting when certain elements in the plan need or can benefit from sorted data. While some

188

Inside Microsoft SQL Server 2008: T-SQL Querying

aspects of tuning can improve performance by a modest percentage, index tuning can often
improve query performance by orders of magnitude. Hence, if you're in charge of tuning,
learning about indexes in depth is time well spent.

I'll start by describing table and index structures that are relevant for our discussions. Then
I'll describe index access methods used by the optimizer and conclude the section with an
analysis of indexing strategies.

Table and Index Structures

Before delving into index access methods, you need to familiarize yourself with table and
index structures. This section describes pages and extents, heaps, clustered indexes, and
nonclustered indexes.

Pages and Extents

A page is an 8-KB unit where SQL Server stores data. It can contain table or index data, bitmaps
for allocation, free space information, and so on. A page is the smallest I/O unit that SQL Server
can read or write. In older versions of SQL Server (prior to 2005) a row could not span multiple
pages and was limited to 8,060 bytes gross (aside from large object data). The limitation was
because of the page size (8,192 bytes), which was reduced by the header size (96 bytes), a
pointer to the row maintained at the end of the page (2 bytes), and a few additional bytes
reserved for future use. Starting with SQL Server 2005, a feature called row-overflow data
relaxes the limitation on row size for columns of types VARCHAR, NVARCHAR, VARBINARY,
SQL_VARIANT, or CLR user-defined types. When the row exceeds 8,060 bytes, values of such
types can be moved to what are known as row overflow pages, and a 24-byte pointer to the
off-row data is maintained in the original page. This way, a row can end up spanning multiple
pages. In-row data is still limited to 8,060 bytes. A value of one of the aforementioned types
can be moved to row-overflow pages provided that the value size doesn't exceed 8,000 bytes.
If the size exceeds 8,000 bytes, the value is stored internally as a large object, and a 16-byte
pointer to the large object value is maintained in the original row.

Keep in mind that a page is the smallest I/O unit that SQL Server can read or write. Even if
SQL Server needs to access a single row, it has to load the whole page to the cache and read
it from there. Queries that involve primarily data manipulation are typically bound mainly
by their /O cost. Of course, a physical read of a page is much more expensive than a logical
read of a page that already resides in cache. It's hard to come up with a number that would
represent the performance ratio between them because several factors are involved in the
cost of a read, including the type of access method used, the fragmentation level of the
data, and other factors. Therefore, | strongly advise against relying on any number as a rule
of thumb.

Chapter 4 Query Tuning 189

Extents are units of eight contiguous pages. When a table or index needs more space for
data, SQL Server allocates a full extent to the object. The single exception applies to small
objects: if the object is smaller than 64 KB, SQL Server typically allocates an individual page
when more space is needed, not a full extent. That page can reside within a mixed extent
whose eight pages belong to different objects. Some activities of data deletion—for
example, dropping a table and truncating a table—deallocate full extents. Such activities
are minimally logged; therefore, they are very fast compared to the fully logged DELETE
statement. Also, some read activities—such as read-ahead reads, which are typically
applied for large table or index scans—can read data at the extent level, or even bigger
blocks. The most expensive part of an 1/O operation is the movement of the disk arm, while
the actual magnetic read or write operation is much less expensive; therefore, reading a
page can take almost as long as reading a full extent.

Table Organization

A table can be organized in one of two ways—either as a heap or as a B-tree. Technically
the table is organized as a B-tree when you create a clustered index on the table and as a
heap when you don't. Because a table must be organized in one of these two ways—heap or
B-tree—the table organization is known as HOBT. Regardless of how the table is organized,
it can have zero or more nonclustered indexes defined on it. Nonclustered indexes are
always organized as B-trees. The HOBT, as well as the nonclustered indexes, can be made

of one or more units called partitions. Technically, the HOBT and each of the nonclustered
indexes can be partitioned differently. Each partition of each HOBT and nonclustered index
stores data in collections of pages known as allocation units. The three types of allocation
units are known as IN_ROW_DATA, ROW_OVERFLOW_DATA, and LOB_DATA. IN_ROW_DATA
holds all fixed-length columns and also variable-length columns as long as the row size

does not exceed the 8,060-byte limit. ROW_OVERFLOW_DATA holds VARCHAR, NVARCHAR,
VARBINARY, SQL_VARIANT, or CLR user-defined typed data that does not exceed 8,000
bytes but was moved from the original row because it exceeded the 8,060-row size limit.
LOB_DATA holds large object values (VARCHAR(MAX), NVARCHAR(MAX), VARBINARY(MAX)
that exceed 8,000 bytes, XML, or CLR UDTs). The system view sys.system_internals_allocation_
units holds the anchors pointing to the page collections stored in the allocation units. In the
following sections | describe the heap, clustered index, and nonclustered index structures.
For simplicity’s sake, I'll assume that the data is nonpartitioned; but if it is partitioned, the
description is still applicable to a single partition.

Heap

A heap is a table that has no clustered index. The structure is called a heap because the data
is not organized in any order; rather, it is laid out as a bunch of extents. Figure 4-15 illustrates
how our Orders table might look like when organized as a heap.

190

Inside Microsoft SQL Server 2008: T-SQL Querying

Pointer to
first IAM Pointer to

1:26610 first 1AM

j—, 147120 1374 1:73 1:89 1:114

1:26610
Single Page Allocation x3632C08E
Slot 0= (1:174)" Slot1 = (1:41) k==
Extent Alloc Status Slot 1 @0x3632C0C2 > 1:41 1:80 1:109 1:120
(1:0) —(1:168) = NOTALLOCATED
1 (1:176) - (1:184) = ALLOCATED
(1:192) - (1:256) = NOT ALLOCATED
(1:264) —(1:288) = ALLOCATED
(1:296) —(1:328) = NOT ALLOCATED
(1:336) - (1:22624) = ALLOCATED
v
1:176 1:177 1:178 1:179 1:180 1:181 1:182 1:183
orderid custid empid shipperid orderdate filler
| leemeeeaaae mmmee mmmemeas mmmaaaa R
1'184 1:185 1:86 343505 (C0000004736 167 C 20040516 a 1:91
347736 (C0000014160 146 G 20040523 a
386520 (C€0000019321 300 | 20040622 a
416891 (C0000004708 135 | 20040901 a
440317 C0000019120 86 E 20041005 a
| 717441 (C0000001686 271 | 20051114 a
- / L
1:264 1:265 1:266 1:267 1:268V 1:269 1:270 1:271

FIGURE 4-15 Heap

The only structure that keeps track of the data belonging to a heap is a bitmap page (or a
series of pages if needed) called the Index Allocation Map (IAM). This bitmap has pointers to
the first eight pages allocated from mixed extents and a representative bit for each extent

in a range of 4 GB in the file. The bit is O if the extent it represents does not belong to the
object owning the IAM page and 1 if it does. If one IAM is not enough to cover all the
object’s data, SQL Server will maintain a chain of IAM pages. SQL Server uses IAM pages to
move through the object’s data when the object needs to be scanned. SQL Server loads the
object’s first IAM page and then directs the disk arm sequentially to fetch the extents by their
file order. As long as there’s no file system fragmentation of the data files, the scan is done in
a sequential manner on disk.

As you can see in Figure 4-15, SQL Server maintains internal pointers to the first IAM page
and the first data page of a heap. Those pointers can be found in the system view
sys.system_internals_allocation_units.

Chapter 4 Query Tuning 191

Because a heap doesn’t maintain the data in any particular order, new rows that are added
to the table can go anywhere. SQL Server uses bitmap pages called Page Free Space (PFS) to
keep track of free space in pages so that it can quickly find a page with enough free space to
accommodate a new row or allocate a new one if no such page exists.

When a row expands as a result of an update to a variable-length column and the page has
no room for the row to expand, SQL Server moves the expanded row to a page with enough
space to accommodate it and leaves behind what's known as a forwarding pointer that points
to the new location of the row. The purpose of forwarding pointers is to avoid the need to
modify pointers to the row from nonclustered indexes when data rows move.

| didn't yet explain a concept called a page split (because page splits can happen only in
B-trees), but suffice to say for now that heaps do not incur page splits. The relevance of this
fact will become apparent later in the chapter.

Clustered Index

All indexes in SQL Server are structured as B-trees, which are a special case of balanced trees.
The definition of a balanced tree (adopted from www.nist.gov) is “a tree where no leaf is
much farther away from the root than any other leaf.”

More Info If you're interested in the theoretical algorithmic background for balanced trees,
please refer to http://www.nist.gov/dads/HTML/balancedtree.html and to The Art of Computer
Programming, Volume 3: Sorting and Searching (2nd Edition) by Donald E. Knuth (Addison-Wesley
Professional, 1998).

A clustered index is structured as a balanced tree, and it maintains the entire table's data in its
leaf level. The clustered index is not a copy of the data; rather, it is the data. I'll describe the
structure of a clustered index in SQL Server through the illustration shown in Figure 4-16.

The figure shows an illustration of how the Orders table might look when organized in a
clustered index where the orderdate column is defined as the index’s key column. Throughout
these books, I'll refer to a table that has a clustered index as a clustered table. As you can see
in the figure, the full data rows of the Orders table are stored in the index leaf level. The data
rows are organized in the leaf in a sorted fashion based on the index key columns (orderdate
in our case). A doubly linked list maintains this logical order, but note that depending on

the fragmentation level of the index, the file order of the pages might not match the logical
order maintained by the linked list.

Also notice that with each leaf row, the index maintains a value called an uniquifier (abbreviated
to ung in the illustration). This value enumerates rows that have the same key value, and it is
used together with the key value to uniquely identify rows when the index’s key columns are
not unique. Later, when discussing nonclustered indexes, I'll elaborate on the reasoning behind
this architecture and the need to uniquely identify a row in a clustered index.

192

Inside Microsoft SQL Server 2008: T-SQL Querying

Pointer to Pointer to Pointer to
first IAM first root
1:1791 1:47120 1:47186 orderdate ung orderid custid morecols

20061231 576 999716 C0000015545
20061231 577 999717 C0000011129
20061231 578 999718 C0000011129

1:1791

Single Page Allocation @0x3642C08E
Slot 0 = (0:0) Slot 1 = (0:0) ---
Extent Alloc Status Slot 1 80x3642C0C2

20061231 613 999757 C0000010921
20061231 614 999758 C0000012275

(1:0) - (1:22064) = NOT ALLOCATED
(1:22072) (1:24256) = NOT ALLOCATED 20061231 999759 C0000003426
(1:24264) - = NOT ALLOCATED
(1:24272) - (1:32344) = ALLOCATED
(1:32352) - = NOT ALLOCATED 1:47186
— od unq page
NULL NULL 147184
20030118 258 1:47585
20030206 210 1:47187
20061116 603 1:36836
20061205 540 1:36837
20061225 367 136838
1:47184 1:47185 1:36838
od unq paged Lyod ung page# L,fod unq paget
NULL NULL 1471204| | 20030118 258 1:47508 20061225 367 141380
20021208 1 147121 20030118 298 1:47509 20061225 407 141381
20021210 1 1471224 | 20030118 338 147510 20061225 447 141382
20030118 | 138 1:47505 20030206 90 147829 20051231 496 141477
20030118 | 178 147506 |le| 20030206 130 147830 e] 20051231 [7536 141478 —
20030118 | 218 147507 20030206 170 147831 20051231 | 576 1:41479 |
L 1
1:47120 1:47121 1:47122 1:41478 1:41479
od g moecoblylod | unq morcolslyiod wnq morecolly pfod g morecoslylod | wng morecols
20021202 NULL --- 20021208 1 --- 20021210 7 20061231 536 - - - 20061231 576 - - -
20021203 NULL -- - 20021208 5 --- 20021210 g --- 20061231 537 - - - 20061231 577 -- -
20021203 1 --- 20021208 3 20021210 9 --- 20061231 538 - - - 20061231 578 -- -
20021207 1 --- 20021210 1 --- 20021210 5 20061231 573 --- 20061231 613 ---
20021207 5 --- 20021210 5 --- 20021210 6 ¢ e iiian 20061231 574 - - - 20061231 614 - - -
20021208 NULL --- [20021210 6 [20021210 7 N 20061231 575 --- [20061231 615 -- -

FIGURE 4-16 Clustered table/index

The rest of the discussion in this section is relevant to both clustered and nonclustered
indexes unless explicitly stated otherwise. When SQL Server needs to perform ordered scan
(or ordered partial scan) operations in the leaf level of the index, it does so by following the
linked list. Note that in addition to the linked list, SQL Server also maintains an IAM page

(or pages) to map the data stored in the index by file order. SQL Server may use the IAM
pages when it needs to perform unordered scans of the index’s leaf level. This type of scan
based on IAM pages is known as an allocation order scan. A scan that is done in index order
is known as an index order scan. The performance difference between the two types of scans
depends on the level of fragmentation in the index. Remember that the most expensive part
of an I/O operation is the movement of the disk arm (that's at least the case with traditional
disk drives that have moving parts, as opposed to solid-state disks). An index order scan in an
index with no fragmentation at all performs similarly to an allocation ordered scan, while an
index order scan will be substantially slower in an index with a high level of fragmentation.

Fragmentation (known as logical scan fragmentation) evolves mainly because of splits of
pages at the leaf level of the index. A split of a leaf page occurs when a row needs to be
inserted into the page (because of the insert of a new row or an update of an existing row)
and the target page does not have room to accommodate the row. Remember that an index
maintains the data in an ordered fashion based on index key order. A row must enter a
certain page based on its key value. If the target page is full, SQL Server will split the page.
That is, it will allocate a new page, then move half the rows from the original page to the new

Chapter 4 Query Tuning 193

one, then insert the new row either to the original or to the new page based on its key value,
and then adjust the linked list to reflect the right logical order of the pages. The new page is
not guaranteed to come right after the one that split—it could be somewhere later in the file,
and it could also be somewhere earlier in the file. Logical scan fragmentation is measured as
the percentage of the out-of-order pages in the leaf level of the index with respect to the total
number of pages. An out-of-order page is a page that appears logically after a certain page
according to the linked list but before it in the file.

Note one exception to the rule that an insert to a full index leaf page will cause a split: When
the inserted row has a higher key than the highest key in the index, the rightmost index leaf
page is not split. Instead, a new empty page is allocated, and the new row is inserted into
that page. This architecture is designed to avoid costly splits and empty space that will not be
reclaimed in ever-increasing indexes.

On top of the leaf level of the index, the index maintains additional levels, each summarizing the
level below it. Each row in a nonleaf index page points to a whole page in the level below it. The
row contains two elements: the key column value of the first row in the pointed index page and
a 6-byte pointer to that page. The pointer holds the file number in the database and the page
number in the file. When SQL Server builds an indey, it starts from the leaf level and adds levels
on top. It stops as soon as a level contains a single page, also known as the root page.

SQL Server always starts with the root page when it needs to navigate to a particular key

at the leaf, using an access method called an index seek, which I'll elaborate on later in the
chapter. The seek operation will jump from the root to the relevant page in the next level,
and it will continue jumping from one level to the next until it reaches the page containing
the sought key at the leaf. Remember that all leaf pages are the same distance from the root,
meaning that a seek operation will cost as many page reads as the number of levels in the
index. The I/O pattern of these reads is random 1/0, as opposed to sequential 1/O, because
naturally the pages read by a seek operation will seldom reside next to each other.

In terms of our performance estimations, it is important to know the number of levels in

an index because that number will be the cost of a seek operation in terms of page reads,
and some execution plans invoke multiple seek operations repeatedly (for example, a
Nested Loops join operator). For an existing index, you can get this number by invoking the
INDEXPROPERTY function with the IndexDepth property. But for an index that you haven't
created yet, you need to be familiar with the calculations that allow you to estimate the
number of levels that the index will contain.

The operands and steps required for calculating the number of levels in an index (call it L)
are as follows (remember that these calculations apply to clustered and nonclustered indexes
unless explicitly stated otherwise):

B The number of rows in the table (call it num_rows) This is 1,000,000 in our case.

B The average gross leaf row size (call it leaf row_size) In a clustered index, this
is actually the data row size. By “gross,” | mean that you need to take the internal

194

Inside Microsoft SQL Server 2008: T-SQL Querying

overhead of the row and the 2-byte pointer stored at the end of the page—pointing to
the row. The row overhead typically involves a few bytes. In our Orders table, the gross
average data row size is roughly 200 bytes.

The average leaf page density (call it page_density) This value is the average
percentage of population of leaf pages. Reasons for pages not being completely full
include data deletion, page splits caused by insertion of rows to full pages, having
very large rows, and explicit requests not to populate the pages in full by specifying a
fillfactor value when rebuilding indexes. In our case, we created a clustered index on
the Orders table after populating it with the data, we did not add rows after creating
the clustered index, and we did not specify a fillfactor value. Therefore, page_density in
our case is close to 100 percent.

The number of rows that fit in a leaf page (call it rows_per_leaf page) The formula
to calculate this value is (page_size - header_size) * page_density / leaf_row_size. Note
that if you have a good estimation of page_density, you don't need to floor this value
because the fact that a row cannot span pages (with the aforementioned exceptions)

is already accounted for in the page_density value. In such a case, you want to use the
result number as is even if it's not an integer. On the other hand, if you just estimate
that page_density will be close to 100 percent, as it is in our case, omit the page_density
operand from the calculation and floor the result. In our case, rows_per_leaf page
amount to floor((8192 - 96) / 200) = 40.

The number of pages maintained in the leaf (call it num_leaf pages) Thisis a
simple formula: num_rows / rows_per_leaf _page. In our case, it amounts to 1,000,000 /
40 = 25,000.

The average gross nonleaf row size (call it non_leaf row_size) A nonleaf row
contains the key columns of the index (in our case, only orderdate, which is 8 bytes);
the 4-byte uniquifier (which exists only in a clustered index that is not unique); the
page pointer, which is 6 bytes; a few additional bytes of internal overhead, which total
5 bytes in our case; and the row offset pointer at the end of the page, which is 2 bytes.
In our case, the gross nonleaf row size is 25 bytes.

The number of rows that can fit in a nonleaf page (call it rows_per non_

leaf page) The formula to calculate this value is similar to calculating rows_per_leaf_
page. For the sake of simplicity, I'll ignore the nonleaf page density factor and calculate
the value as floor((page_size - header_size) / non_leaf_row._size), which in our case
amounts to floor((8192 - 96) / 25) = 323.

The number of levels above the leaf (call it L-1) This value is calculated with the
following formula: ceiling(10g,4,s per non_ieaf page(MUM_leaf_pages)). In our case, L-1
amounts to ceiling(logs,5(25000)) = 2. Obviously, you simply need to add 1 to get L,
which in our case is 3.

This exercise leads me to a very important point that | will rely on in my performance
discussions. You can play with the formula and see that with up to about several thousand

Chapter 4 Query Tuning 195

rows, our index will have two levels. Three levels would have up to about 4,000,000 rows,

and four levels would have up to about 4,000,000,000 rows. With nonclustered indexes, the
formulas are identical—it's just that you can fit more rows in each leaf page, as | will describe
later. So with nonclustered indexes, the upper bound for each number of levels covers even
more rows in the table. The point is that in our table all indexes have three levels, which is the
cost you have to consider in your performance estimation when measuring the cost of a seek
operation. And in general, with small tables most indexes will typically have up to two levels,
and with large tables, they will typically have three or four levels, unless the total size of the
index keys is large. Keep these numbers in mind for our later discussions.

Nonclustered Index on a Heap

A nonclustered index is also structured as a B-tree and in many respects is similar to a
clustered index. The only difference is that a leaf row in a nonclustered index contains

only the index key columns and a row locator value pointing to a particular data row. The
content of the row locator depends on whether the table is a heap or a clustered table. This
section describes nonclustered indexes on a heap, and the following section will describe
nonclustered indexes on a clustered table.

Figure 4-17 illustrates the nonclustered index created by our primary key constraint (PK_Orders)
defining the orderid column as the key column.

Pointer to Pointer to Pointer to N
first IAM first root orderid page¥
1:26612 1:22632 1:22698 NULL 122696
335259 1:22697
670517 1:22699

1:26612

Single Page Allocation @0x3623CO8E
Slot 0= (0:0) Slotl = (0:0) ---
Extent Alloc Status Slot 1 @0x3623C0C2

0 — (1:22624) = NOT ALLOCATED
(1:22632) - (1:22696)= ALLOCATED
(1:22704) - (1:22752) = NOT ALLOCATED -
(1:22760) - (1:24256) = ALLOCATED orderid RID
(1:24264) — = NOT ALLOCATED 1:22698 v/ ONU et
orderid page# 999846 1:12458:16
NULL 1:22696 999847 1:16214: 1
335259 1:22697 999848 1:12695:12
670517 122699
999998 1:14715:13
999999 1:14402: 0
1000000 1:25185: 9
1:22696 1:22697 1:22699
orderid page# orderid page# orderid page#
NULC 123632 335259 123318 670517 123940
s40 | 122633 335789 123319 671056 123941
1079 | 122634 336337 123320 671595 123942
333642 | 123315 T668900 123937 “o98768 124557
334181 | 123316 669439 123938 999307 [~124558
334720 | 123317 669978 123939 999846 | 124550~
1:22632 1:22633 1:22634 1:24558 1:24559
orderi R =5 jorderi R bollodtae BB [oeeee sllorder R DN blladad I
1 11195724 540 1:13801: 1 1079 1 390436 999307 12607913 999846 1:12458:16
2 12698111 541 11715811 1080 1 153816 999308 1: 250210 999847 1:16214:1
3 116562 6 542 12125935 1081 11728819 999309 11556717 999848 11269512
T 537 114604117 "7 71076 1:25295:29 1615 1:21032:34 T999843 1 793532 7999998 1:14715:13
538 1:1024539 1076 1 866:39 1616 114145 1 999844 11079910 999999 114402: 0
539 1 574126] 1076 11129534 [1617 1 248513 [1 oossas 1 725734 [*=| 1000000 125185 9

FIGURE 4-17 Nonclustered index on a heap

196

Inside Microsoft SQL Server 2008: T-SQL Querying

The row locator used by a nonclustered index leaf row to point to a data row is an 8-byte
physical pointer called RID. It consists of the file number in the database, the target page
number in the file, and the row number in the target page (zero based). When looking for

a particular data row through the index, SQL Server has to follow the seek operation with

a RID lookup operation, which translates to reading the page that contains the data row.
Therefore, the cost of a RID lookup is one page read. For a single lookup or a very small
number of lookups, the cost is not high, but for a large number of lookups, the cost can be
very high because SQL Server ends up reading one whole page per sought row. For range
queries that use a nonclustered index and a series of lookups—one per qualifying key—the
cumulative cost of the lookup operations typically makes up the bulk of the cost of the query.
I'll demonstrate this point in the "Index Access Methods" section. As for the cost of a seek
operation, remember that the formulas | provided earlier are just as relevant to nonclustered
indexes. It's just that the leaf row_size is smaller, and therefore the rows_per_leaf_page will be
higher. But the formulas are the same.

Nonclustered Index on a Clustered Table

Nonclustered indexes created on a clustered table are architected differently than on a heap.
The only difference is that the row locator in a nonclustered index created on a clustered
table is a value called a clustering key, as opposed to being an RID. The clustering key
consists of the values of the clustered index keys from the pointed row and the uniquifier
(if present). The idea is to point to a row “logically” as opposed to “physically.” This
architecture was designed mainly for OLTP systems, where clustered indexes often suffer
from many page splits upon data insertions and updates. If nonclustered indexes pointed to
RIDs of rows, all pointers to the data rows that moved would have to be changed to reflect
their new RIDs—and that's true for all relevant pointers in all nonclustered indexes. Instead,
SQL Server maintains logical pointers that don’t change when data rows move.

Figure 4-18 illustrates what the PK_Orders nonclustered index might look like; the index
is defined with the orderid as the key column, and the Orders table has a clustered index
defined with the orderdate as the key column.

A seek operation looking for a particular key in the nonclustered index (some orderid value)
will end up reaching the relevant leaf row and have access to the row locator. The row
locator in this case is the clustering key of the pointed row. To actually grab the pointed

row, a lookup operation will need to perform a whole seek within the clustered index based
on the acquired clustering key. This type of lookup is known as a key lookup, as opposed to
a RID lookup. | will demonstrate this access method later in the chapter. The cost of each
lookup operation here (in terms of the number of page reads) is as high as the number of
levels in the clustered index (3 in our case). That's compared to a single page read for a RID
lookup when the table is a heap. Of course, with range queries that use a nonclustered index
and a series of lookups, the ratio between the number of logical reads in a heap case and a
clustered table case will be close to 1:L, where L is the number of levels in the clustered index.
Before you worry too much about this point and remove all clustered indexes from your

Chapter 4 Query Tuning 197

Pointer to Pointer to Pointer to
first IAM first root
1:1790 1:41952 1:42018 orderid page#
NULL 1:42016
218994 1:42017
1:1790 437978 1:42019
Single Page Allocation @ 0x35C6C0O8E
slot 0 = (0:0) Slot 1 = (0:0).. 656966 1:42020
Extent Alloc Status Slot 1 @0x35C6C0C2 875952 1:42021
(1:0) — (1:41944) = NOT ALLOCATED
(1:41952) — (1:42016) = ALLOCATED
(1:42024) - (1:42072) = NOT ALLOCATED orderid row locator
(1:42080) — (1:44856) = ALLOCATED 420117 99NN 9000 | mmmmems mmemmmm==
(1:44864) - (1:57104) = NOT ALLOCATED 1A018Y 999883 20061231, 393
AL e 999884 20061231, 394
18557 142017 _9_9_9885 20061231, 395
arors a0 | 999998 20061231, 308
875952 1:42021 999999 20061231, 309
1000000 20061211, 646
1:42016 1:42017 1:42021
orderid page# N orderid page# FOREN orderid page#
NULL 1:41952 218994 142638 875952 1:44504
360 219346 1:42639 G R
713 219698 1:42640 8766568881:44506
" 217938 4 436992 143257 [e-- - -4 999178 144854
218290 437274 1:43258 SEEBEL | MRS
218642 437626 1:43259 SEREEE || IHEE—
v ;
1:41952 1:41953 1:41954 1:44855 1:44856
orderid row locator b | orderid row locator l»| orderid row locator |=p = = =] orderid row locator l»| orderid row locator
1 20030101, 171 360 20021223, 48 713 20030102, 7 999531 20061231, 139 999883 20061231, 393
2 20030101, 172 361 20030101, 564 714 20030102, 8 999532 20061231, 140 999884 20061231, 394
220030101, 173 362 20030101, 565 715 20030102, 9 999533 20061231, 141 999885 20061231, 395
357 20030101, 579 710 20021226, 6 1062 20030102, 258 999880 20061204, 677 999998 20061231, 308
358 20030101,580 |44 711 20030102, 5|€ 1063 20030102, 259 [¢== = ~ 999881 20061231, 391 |4 999999 20061231, 309
359 20030101, 581 712 20030102, 6 1064 20030102, 260 999882 20061231,392 | |1000000 20061211, 646

FIGURE 4-18 Nonclustered index on a clustered table

tables, keep in mind that with all lookups going through the clustered index, the nonleaf
levels of the clustered index will typically reside in cache. Typically, most of the physical
reads in the clustered index will be against the leaf level. Therefore, the additional cost of
lookups against a clustered table compared to a heap is usually a small portion of the total
query cost. Now that the background information about table and index structures has been
covered, the next section will describe index access methods.

Index Access Methods

This section provides a technical description of the various index access methods; it is
designed to be used as a reference for discussions in these books involving analysis of
execution plans. Later in this chapter, I'll describe an analysis of indexing strategies that
demonstrates how you can put this knowledge into action.

If you want to follow the examples in this section, rerun the code in Listing 4-1 to re-create the
sample tables in our Performance database along with all the indexes. I'll be discussing some
access methods to use against the Orders table, both when it's structured as a heap and when
it's structured as a clustered table. Therefore, I'd also suggest that you run the code in Listing 4-1
against another database (say, Performance?2), after renaming the database name in the script
accordingly and commenting out the statement that creates the clustered index on Orders.

198

Inside Microsoft SQL Server 2008: T-SQL Querying

When | discuss an access method involving a clustered table, run the code against the Performance
database. When the discussion is about heaps, run it against Performance2. Also remember that
Listing 4-1 uses randomization to populate the customer IDs, employee IDs shipper IDs, and order
dates in the Orders table. This means that your results will probably slightly differ from mine.

Table Scan/Unordered Clustered Index Scan

A table scan or an unordered clustered index scan involves a scan of all data pages belonging
to the table. The following query against the Orders table structured as a heap would require
a table scan:

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders;

Figure 4-19 shows the graphical execution plan produced by the relational engine’s optimizer
for this query, and Figure 4-20 shows an illustration of the way this access method is
processed by the storage engine.

5

1 Table Scan
[Orders]
Cost: 100 %
Table Scan
Scan rowvs from a table,
Physical Operation Table Scan
Logical Operation Table Scan
Actual Number of Rows 1000000
Estimated IO Cost 18.0698
Estimated CPU Cost 110016
Mumber of Executions 1
Estimated Number of Executions 1
Estimated Operator Cost 19,1699 {100%:)
Estimated Subtree Cost 19,1699
Estimated Number of Rows 1000000
Estimated Row Size A0 R
Actual Rebinds 0
Actual Rewinds 0
Ordered False
Node ID 0
Object
[Performance].[dbo]. [Orders]
Qutput List
[Performance2] [dbal.[Crders].arderid, [Perfarmance2].
[dbal[Crders].custid, [Perfarmance?].[dbo].
[Ordersl.empid, [Performancel].[dba],
[Orders]shipperid, [Peformance2].[dba],
[Crders].arderdate

FIGURE 4-19 Table scan (execution plan)

Heap

Pointer to
first IAM IAM

Allocation Order Scan

FIGURE 4-20 Table scan

Chapter 4 Query Tuning 199

An instruction of the optimizer in the execution plan to perform a table scan can be carried

out by the storage engine only in one way—using an allocation order scan. That is, SQL Server
uses the table's IAM pages to scan the extents belonging to the table by their file order. As long
as there’s no file system fragmentation, the activity is done as a sequential activity in the disk
drives. The number of logical reads should be similar to the number of pages the table consumes
(around 25,000 in our case). Note that in such scans SQL Server typically uses a very efficient
read-ahead strategy that can read the data in larger chunks than 8 KB. When | ran this query on
my system, | got the following performance measures from STATISTICS 10, STATISTICS TIME:

B |ogical reads 24391

B Physical reads 3

B Read-ahead reads 24368

® CPU time 951 ms

B Elapsed time 23935 ms

B Estimated subtree cost 19.1699

Of course, the run times | got are not an indication of the run times you would get in an average
production system. But | wanted to show them for illustration and comparison purposes.

If the table has a clustered index, the access method that will be applied will be an unordered
clustered index scan (that is, a Clustered Index Scan operator, with the property Ordered: False).
Figure 4-21 shows the execution plan that the optimizer will produce for this query. Notice that
the Ordered property of the Clustered Index Scan operator indicates False. Figure 4-22 shows
an illustration of the two ways that the storage engine can carry out this access method.

-4

5 b

Clustered Index scan (C1.
[Orders]. [1dx_c1_od]
Cost: 100 %

Clustered Index Scan [Clustered)
Sranning a clustered index, entirely or anly a range,
Physical Operation Clustered Index Scan
Logical Operation Clustered Index Scan
Actual Number of Rows 1000000
Estimated I/O Cost 18.5216
Estimated CPU Cost 110016
Mumber of Executions 1
Estimated Number of Executions 1
Estimated Operator Cost 19,6218 {100%5)
Estimated Subtree Cost 19,6218
Estimated Number of Rows 1000000
Estimated Row Size 40 B
Actual Rebinds 0
Actual Rewinds 0
i Ordered False
Node ID 0
Object
[Perfarmance].[dbo].[Orders].[idz_cl_od]
Output List
[Performance].[dbo].[Orders].orderid, [Performance].[dbo].
[Orders].custid, [Perforrnance].[dbaol.[Orders)ermpid,
[Performance].[dbol[Crders]shipperid, [Performance].[dbal.
[Crders].orderdate

FIGURE 4-21 Unordered clustered index scan (execution plan)

200

Inside Microsoft SQL Server 2008: T-SQL Querying

Clustered

Index
Pointer to 1 i g [— =

first leaf page
le— l— le— PR
Index Order Scan

Clustered

Index

Pointer to
first IAM ——| 1AM

Allocation Order Scan

FIGURE 4-22 Unordered clustered index scan

The fact that the Ordered property of the Clustered Index Scan operator indicates False
means that as far as the relational engine is concerned, the data does not need to be returned
from the operator ordered. This doesn't mean that it is a problem if it is returned ordered;
instead, it means that any order would be fine. This leaves the storage engine with some
maneuvering space in the sense that it is free to choose between two types of scans: an index
order scan (scan of the leaf of the index following the linked list) and an allocation order scan
(scan based on IAM pages). The factors that the storage engine takes into consideration when
choosing which type of scan to employ include performance and data consistency. I'll provide
more details about the storage engine’s decision-making process after | describe ordered
index scans (Clustered Index Scan and Index Scan operators with the property Ordered: True).

Here are the performance measures | got for this query:

B Logical reads 25081

B Physical reads 5

B Read-ahead reads 25073
® CPU time 889 ms

Chapter 4 Query Tuning 201
B Elapsed time 24025 ms
B Estimated subtree cost 19.6218

Unordered Covering Nonclustered Index Scan

An unordered covering nonclustered index scan is similar in concept to an unordered clustered
index scan. The concept of a covering index means that a nonclustered index contains all
columns specified in a query. In other words, a covering index is not an index with special
properties; rather, it becomes a covering index with respect to a particular query. SQL Server
can find all the data it needs to satisfy the query by accessing solely the index data, without
the need to access the full data rows. Other than that, the access method is the same as an
unordered clustered index scan, only, obviously, the leaf level of the covering nonclustered
index contains fewer pages than the leaf of the clustered index because the row size is
smaller and more rows fit in each page. | explained earlier how to calculate the number of
pages in the leaf level of an index (clustered or nonclustered).

As an example for this access method, the following query requests all orderid values from
the Orders table:

SELECT orderid
FROM dbo.Orders;

Our Orders table has a nonclustered index on the orderid column (PK_Orders), meaning that
all the table’s order IDs reside in the index’s leaf level. The index covers our query. Figure 4-23
shows the graphical execution plan you would get for this query, and Figure 4-24 illustrates
the two ways in which the storage engine can process it.

EX
‘| Index Scan (MonClustered)
[Orders]. [PK_Orders]
Cost: 100 %

Index Scan [MonClustered)
Scan a honclustered index, entirely or only a range,
Physical Operation Index Scan
Logical Operation Index Scan
Actual Number of Rows 1nno0oo
Estimated IfO Cost 210757
Estim ated CPU Cost 110016
Mumber of Executions 1
Estim ated Number of Executions 1
Estimated Operator Cost 320773 (100%6)
Estimated Subtree Cost 320773
Estimated Number of Rows 1noo0od
Estim ated Row Size 118
Actual Rebinds]
Actual Rewinds]
Ordered False
Node ID 1]
Object
[Performance].[dbo].[Orders|.[PK_Orders]
Output List
[Performance].[dbo].[Orders].orderid

FIGURE 4-23 Unordered covering nonclustered index scan (execution plan)

202 Inside Microsoft SQL Server 2008: T-SQL Querying

Nonclustered
Index

Pointer to
first leaf page

e | !

Index Order Scan

Nonclustered
Index

Pointer to
firstIAM | IAM

Allocation Order Scan

FIGURE 4-24 Unordered covering nonclustered index scan

The leaf level of the PK_Orders index contains fewer than 3,000 pages, compared to the
25,000 data pages in the table. Here are the performance measures | got for this query:

B |ogical reads 2850

B Physical reads 2

B Read-ahead reads 2580

® CPUtime 327 ms

B Elapsed time 16649 ms

B Estimated subtree cost 3.20773

Ordered Clustered Index Scan

An ordered clustered index scan is a full scan of the leaf level of the clustered index
guaranteeing that the data will be returned to the next operator in index order. For example,

Chapter 4 Query Tuning 203

the following query, which requests all orders sorted by orderdate, will get such an access
method in its plan:

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders
ORDER BY orderdate;

You can find the execution plan for this query in Figure 4-25 and an illustration of how the
storage engine carries out this access method in Figure 4-26.

3 by
Clustered Index Scan (C1..
[orders]. [Tdx_cl_od]
Cost: 100 %

Clustered Index Scan [Clustered)
Scanning a clustered index, entirely or only a range,
Physical Operation Clustered Index Scan
Logical Operation Clustered Index Scan
Actual Number of Rows 1000000
Estimated I/O Cost 18,5216
Estimated CPU Cost 110016
Estimated Mumber of Executions 1
Mumber of Executions 1
Estimated Operator Cost 19,6218 (100%:)
Estimated Subtree Cost 19,6218
Estimated Number of Rows 1000000
Estimated Row Size LN
Actual Rebinds 0
Actual Rewinds 0
Ordered True
Mode ID 0
Object
[Performance].[dbo].[Orders].[id:_cl_od]
Output List
[Performance].[dbol[Qrders].orderid, [Performance].[dbo].
[Orders).custid, [Performance]. [dbal [Orders] empid,
[Performance].[dbol[Orders]shipperid, [Performance] [dbo],
[Orders].orderdate

FIGURE 4-25 Ordered clustered index scan (execution plan)

Clustered
Index
Pointer to nd g g — =1
first leaf page
|a—| — a— —

FIGURE 4-26 Ordered clustered index scan

204

Inside Microsoft SQL Server 2008: T-SQL Querying

Notice in the plan that the Ordered property is True. This indicates that the data needs to be
returned from the operator ordered. When the operator has the property Ordered: True, the
scan can be carried out by the storage engine only in one way—by using an index order scan
(scan based on index linked list), as shown in Figure 4-26. Unlike an allocation order scan, the
performance of an index order scan depends on the fragmentation level of the index. With
no fragmentation at all, the performance of an index order scan should be very close to the
performance of an allocation order scan because both will end up reading the data in file order
sequentially. However, as the fragmentation level grows higher, the performance difference will
be more substantial, in favor of the allocation order scan, of course. The natural deductions are
that you shouldn't request the data sorted if you don't need it sorted, to allow the potential for
using an allocation order scan, and that you should resolve fragmentation issues in indexes that
incur large index order scans. I'll elaborate on fragmentation and its treatment later. Here are the
performance measures that | got for this query:

B |ogical reads 25081

B Physical reads 5

B Read-ahead reads 25073

® CPUtime 983 ms

B Elapsed time 25192 ms

B Estimated subtree cost 19.6218

Note that the optimizer is not limited to ordered-forward activities. Remember that the
linked list is a doubly linked list, where each page contains both a next and a previous pointer.
Had you requested a descending sort order, you would have still gotten an ordered index
scan, only ordered backward (from tail to head) instead of ordered forward (from head to
tail). SQL Server also supports descending indexes, but these are not needed in simple cases
like getting descending sort orders. Rather, descending indexes are valuable when you create
an index on multiple key columns that have opposite directions in their sort requirements—
for example, sorting by col1, col2 DESC.

Ordered Covering Nonclustered Index Scan

An ordered covering nonclustered index scan is similar in concept to an ordered clustered
index scan, with the former performing the access method in a nonclustered index—typically
when covering a query. The cost is, of course, lower than a clustered index scan because
fewer pages are involved. For example, the PK_Orders index on our clustered Orders table
happens to cover the following query, even though it might not seem so at first glance:

SELECT orderid, orderdate
FROM dbo.Orders
ORDER BY orderid;

Chapter 4 Query Tuning 205

Keep in mind that on a clustered table, nonclustered indexes will use clustering keys as row
locators. In our case, the clustering keys contain the orderdate values, which can be used
for covering purposes as well. Also, the first (and, in our case, the only) key column in the
nonclustered index is the orderid column, which is the column specified in the ORDER BY
clause of the query; therefore, an ordered index scan is a natural access method for the
optimizer to choose.

Figure 4-27 shows the query's execution plan, and Figure 4-28 illustrates the way the storage
engine processes the access method.

- 25
Index Scan [MonClustered)
[orders] . [PE_Orders]
Cost: 100 %

Index Scan [NonClustered)
Scan a nonclustered index, entirely or only a range.
Physical Operation Index Scan
Logical Operation Index Scan
Actual Number of Rows 1000000
Estimated [fO Cost 210757
Estimated CPU Cost 110014
Estimated Number of Executions 1
MNumber of Executions 1
Estimated Operator Cost 320773 (100%:)
Estimated Subtree Cost 3.20773
Estimated Mumber of Rows 1000000
Estimated Row Size e
Actual Rebinds 1]
Actual Rewinds]
Ordered True
Node ID]
Object
[Performance].[dbo].[Orders|.[PE_Orders]
Qutput List
[Performance].[dbo].[Orderslarderid, [Performance].
[dba] [Crders].orderdate

FIGURE 4-27 Ordered covering nonclustered index scan (execution plan 1)

Nonclustered
Index

Pointer to
first leaf page

FIGURE 4-28 Ordered covering nonclustered index scan

Notice in the plan that the Ordered property of the Index Scan operator in the yellow
information box shows True.

206

Inside Microsoft SQL Server 2008: T-SQL Querying

Here are the performance measures that | got for this query:

B |ogical reads 2850

B Physical reads 2

B Read-ahead reads 2850

B CPU time 592 ms

B Elapsed time 18153 ms

B Estimated subtree cost 3.20733

An ordered index scan is used not only when you explicitly request the data sorted but also
when the plan uses an operator that can benefit from sorted input data. This can be the
case when processing GROUP BY, DISTINCT, joins, and other requests. This can also happen
in less obvious cases. For example, check out the execution plan shown in Figure 4-29 for
the following query:

SELECT orderid, custid, empid, orderdate
FROM dbo.Orders AS 01
WHERE orderid =

(SELECT MAX(orderid)

FROM dbo.Orders AS 02

WHERE 02.orderdate = Ol.orderdate);

5 =] | 22

==
Index Scan [MonClustered)

Top Segment . .
X s X s [Orders]. [Tdx_unc_od_oid..
Cost: O % Cost: 2 % Cost: 98 %
Index Scan [(NonClustered)
Scan a honclustered index, entirely or only a range.
Physical Operation Index Scan
Logical Operation Index Scan
Actual Number of Rows 1000000
Estimated IfO Cost 3.4809
Estimated CPU Cost 110016
Estimated Number of Executions 1
Mumber of Executions 1
Estimated Operator Cost 4.58106 {98%)
Estimated Subtree Cost 458106
Estimated Number of Rows 1000000
Estimated Row Size 4B
Actual Rebinds]
Actual Rewinds]
Ordered True
Node ID 3
Object
[Performance].[dbal.[Crders].
[k unc_ad_aid_i_cid_eid] [01]
Qutput List
[Performance].[dbo].[Orders].orderid, [Performance].
[dbol[Crders].custid, [Performance].[dbo].
[Crderslernpid, [Performance].[dbo],
[Orders].orderdate

FIGURE 4-29 Ordered covering nonclustered index scan (execution plan 2)

Chapter 4 Query Tuning 207

The Segment operator arranges the data in groups and emits a group at a time to the next
operator (Top in our case). Our query requests the orders with the maximum orderid per
orderdate. Fortunately, we have a covering index for the task (idx_unc_od_oid_i_cid_eid), with
the key columns being (orderdate, orderid) and included nonkey columns being (custid, empid).
I'll elaborate on included nonkey columns later in the chapter. The important point for our
discussion is that the segment operator organizes the data by groups of orderdate values and
emits the data, a group at a time, where the last row in each group is the maximum orderid

in the group; because orderid is the second key column right after orderdate. Therefore, the
plan doesn't need to sort the data; rather, the plan just collects it with an ordered scan from
the covering index, which is already sorted by orderdate and orderid. The Top operator has a
simple task of just collecting the last row (TOP 1 descending), which is the row of interest for
the group. The number of rows reported by the Top operator is 1491, which is the number of
unique groups (orderdate values), each of which got a single row from the operator. Because
our nonclustered index covers the query by including in its leaf level all other columns that are
mentioned in the query (custid, empid), there's no need to look up the data rows; the query is
satisfied by the index data alone. Here are the performance measures | got for this query:

B Logical reads 4717

B Physical reads 8

B Read-ahead reads 4696

® CPU time 468 ms

B Elapsed time 2157 ms

B Estimated subtree cost 4.68121

The number of logical reads that you see is similar to the number of pages that the leaf level
of the index holds.

The Storage Engine’s Treatment of Scans
This section is applicable to all versions of SQL Server from 7.0 through to 2008.

Before | continue the coverage of additional index access methods, I'm going to explain

the way the storage engine treats the relational engine’s instructions to perform scans. The
relational engine is like the brains of SQL Server; it includes the optimizer that is in charge of
producing execution plans for queries. The storage engine is like the muscles of SQL Server;
it needs to carry out the instructions provided to it by the relational engine in the execution
plan and perform the actual row operations. Sometimes the optimizer’s instructions leave the
storage engine with some room for maneuvering, and then the storage engine determines
the best of several possible options based on factors such as performance and consistency.

When the plan shows a Table Scan operator, the storage engine has only one option—to use an
allocation order scan. When the plan shows an Index Scan operator (clustered or nonclustered)
with the property Ordered: True, the storage engine can use only an index order scan.

208

Inside Microsoft SQL Server 2008: T-SQL Querying

Allocation Order Scans vs. Index Order Scans When the plan shows an Index Scan operator
with Ordered: False, the relational engine doesn’t care in what order the rows are returned.

In this case there are two options to scan the data—allocation order scan and index order
scan. It is up to the storage engine to determine which to employ. Unfortunately, the storage
engine’s actual choice is not indicated in the execution plan, or anywhere else. | will explain
the storage engine'’s decision-making process, but it's important to understand that what the
plan shows is the relational engine’s instructions and not what the storage engine did.

The performance of an allocation order scan is not affected by logical fragmentation in the
index because it's done in file order anyway. However, the performance of an index order scan
is affected by fragmentation—the higher the fragmentation, the slower the scan. Therefore,
as far as performance is concerned, the storage engine considers the allocation order scan

the preferable option. The exception is when the index is very small (up to 64 pages), the cost
of interpreting IAM pages becomes significant with respect to the rest of the work, in which
case the storage engine considers the index order scan to be preferable. Small tables aside, in
terms of performance the allocation order scan is considered preferable.

However, performance is not the only aspect that the storage engine needs to take into
consideration; it also needs to account for data consistency expectations based on the
effective isolation level. When there’s more than one option to carry out a request, the
storage engine opts for the fastest option that meets the consistency requirements.

In certain circumstances, scans can end up returning multiple occurrences of rows or even
skip rows. Allocation order scans are more prone to such behavior than index order scans. I'll
first describe how such a phenomenon can happen with allocation order scans and in which
circumstances. Then I'll explain how it can happen with index order scans.

Allocation Order Scans Figure 4-30 demonstrate in three steps how an allocation order
scan can return multiple occurrences of rows.

Step 1 shows an allocation order scan in progress, reading the leaf pages of some index in
file order (not index order). Two pages were already read (keys 50, 60, 70, 80, 10, 20, 30, 40).
At this point, before the third page of the index is read, someone inserts a row into the table
with key 25.

Step 2 shows a split that took place in the page that was the target for the insert since it was
full. As a result of the split, a new page was allocated—in our case later in the file at a point that
the scan did not yet reach. Half the rows from the original page move to the new page (keys
30, 40), and the new row with key 25 was added to the original page because of its key value.

Step 3 shows the continuation of the scan: reading the remaining two pages (keys 90, 100,
110, 120, 30, 40) including the one that was added because of the split. Notice that the rows
with keys 30 and 40 were read a second time.

Chapter 4 Query Tuning 209

Allocation Order Scan: Getting Multiple Occurrences of Rows

Step 1:

50 10 90

60 20 100
70 30 110
80 40 120

allocation order scan ———

Output: 50, 60, 70, 80, 10, 20, 30, 40

split
Step 2:
50 10 90 30
60 20 100 40
70 25 110
80 \\ 120
allocation order scan—x
Output: 50, 60, 70, 80, 10, 20, 30, 40 insert 25
Step 3:
50 10 90 30
60 20 100 40
70 25 110
80 120

allocation order scan
Output: 50, 60, 70, 80, 10, 20, 30, 40, 90, 100, 110, 120, 30, 40

FIGURE 4-30 Allocation order scan: getting multiple occurrences of rows

Of course, in a very similar fashion, depending on how far the scan reaches by the point this
split happens and where the new page is allocated, the scan might end up skipping rows.
Figure 4-31 demonstrates how this can happen in three steps.

Step 1 shows an allocation order scan in progress that manages to read one page (keys 50,
60, 70, 80) before the insert takes place.

210 Inside Microsoft SQL Server 2008: T-SQL Querying

Allocation Order Scan: Skipping Rows
Step 1:

50 10 90
60 20 100
70 30 110
80 40 120
allocation
order scan

Output: 50, 60, 70, 80

split
Step 2:
30 50 10 90
40 60 20 100
70 25 110
80 '\ 120
allocation \
—_—
order scan insert 25
Output: 50, 60, 70, 80
Step 3:
30 50 10 920
40 60 20 100
70 25 110
80 120

allocation order scan ———
Output: 50, 60, 70, 80, 10, 20, 25, 90, 100, 110, 120,

FIGURE 4-31 Allocation order scan: skipping rows

Step 2 shows the split of the target page, only this time the new page is allocated earlier in
the file at a point that the scan already passed. Like in the previous split example, the rows
with keys 30 and 40 move to the new page, and the new row with key 25 is added to the
original page.

Chapter 4 Query Tuning 211

Step 3 shows the continuation of the scan: reading the remaining two pages (keys 10, 20, 25,
90, 100, 110, 120). As you can see, the rows with keys 30 and 40 were completely skipped.

In short, an allocation order scan can return multiple occurrences of rows and skip rows
resulting from splits that take place during the scan. A split can take place because of an
insert of a new row, an update of an index key causing the row to move, or an update of a
variable-length column causing the row to expand. Remember that splits only take place in
indexes; heaps do not incur splits. Therefore, such phenomena cannot happen in heaps.

An index order scan is safer in the sense that it won't read multiple occurrences of the same
row or skip rows because of splits. Remember that an index order scan follows the index
linked list in order. If a page that the scan hasn't yet reached splits, the scan ends up reading
both pages; therefore, it won't skip rows. If a page that the scan already passed splits, the
scan doesn't read the new one; therefore, it won't return multiple occurrences of rows.

The storage engine is well aware of the fact that allocation order scans are prone to such
inconsistent reads because of splits, while index order scans aren't. It will carry out an Index
Scan Ordered: False with an allocation order scan in one of two categories of cases that | will
refer to as the unsafe and safe categories.

The unsafe category is when the scan can actually return multiple occurrences of rows or
skip rows because of splits. The storage engine opts for this option when the index size is
greater than 64 pages and the request is running under the read uncommitted isolation level
(for example, when you specify NOLOCK in the query). Most people’s perception of read
uncommitted is simply that the query does not request a shared lock and therefore that it
can read uncommitted changes (dirty reads). This perception is true, but unfortunately most
people don't realize that in the eyes of the storage engine, read uncommitted is also an
indication that pretty much all bets are off in terms of consistency. In other words, it will opt
for the faster option even at the cost of returning multiple occurrences of rows or skipping
rows. When the query is running under the default read committed isolation level or higher,
the storage engine will opt for an index order scan to prevent such phenomena from
happening because of splits. To recap, the storage engine employs allocation order scans of
the unsafe category when all of the following are true:

B The index size is greater than 64 pages.
B The plan shows Index Scan, Ordered: False.
B The query is running under the read uncommitted isolation level.

B Changes are allowed to the data.

In terms of the safe category, the storage engine also opts for allocation order scans with
higher isolation levels than read uncommitted when it knows that it is safe to do so without
sacrificing the consistency of the read (at least as far as splits are concerned). For example,
when you run the query using the TABLOCK hint, the storage engine knows that no one

212

Inside Microsoft SQL Server 2008: T-SQL Querying

can change the data while the read is in progress. Therefore, it is safe to use an allocation
order scan. Of course this comes at the cost of requests for modifications being blocked
during the read. Another example where the storage engine knows that it is safe to employ
an allocation order scan is when the index resides in a read-only filegroup or database. To
summarize, the storage engine will use an allocation order scan of the safe category when
the index size is greater than 64 pages and the data is read-only (because of the TABLOCK
hint, read-only filegroup, or database).

Keep in mind that logical fragmentation has an impact on the performance of index order
scans but not on that of allocation order scans. And based on the preceding information, you
should realize that the storage engine will sometimes use index order scans to process an
Index Scan operator with the Ordered: False property.

The next section will demonstrate both unsafe and safe allocation order scans.
Run the following code to create a table called T1:

SET NOCOUNT ON;
USE tempdb;
GO

-- Create table T1
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1
(
c1_col UNIQUEIDENTIFIER NOT NULL DEFAULT(NEWID(Q)),
filler CHAR(2000) NOT NULL DEFAULT('a')
)
GO
CREATE UNIQUE CLUSTERED INDEX idx_c1_col ON dbo.T1(c1_col);
GO

A unique clustered index is created on c/_col, which will be populated with random GUIDs
by the default expression NEWID(). Populating the clustered index key with random
GUIDs should cause a high level of splits, which in turn should cause a high level of logical
fragmentation in the index.

Run the following code to insert rows into the table using an infinite loop and stop it after a
few seconds (say 5, to allow more than 64 pages in the table):

SET NOCOUNT ON;
USE tempdb;

TRUNCATE TABLE dbo.T1;

WHILE 1 =1
INSERT INTO dbo.T1l DEFAULT VALUES;

Chapter 4 Query Tuning 213

Run the following code to check the fragmentation level of the index:

SELECT avg_fragmentation_in_percent FROM sys.dm_db_index_physical_stats
(

DB_ID('tempdb'),

OBJECT_ID('dbo.T1"),

1,

NULL,

NULL
);

When [ran this code in my system, | got more than 98 percent fragmentation, which of
course is very high. If you need more evidence to support the fact that the order of the
pages in the linked list is different from their order in the file, you can use the undocumented
DBCC IND command, which gives you the B-tree layout of the index:

DBCC IND('tempdb', 'dbo.T1', 0);

| prepared the following piece of code to spare you from having to browse through the
output of DBCC IND in attempt to figure out the index leaf layout:

CREATE TABLE #DBCCIND

(
PageFID INT,
PagePID INT,
TAMFID INT,
IAMPID INT,
ObjectID INT,
IndexID INT,
PartitionNumber INT,
PartitionID BIGINT,
jam_chain_type VARCHAR(100),
PageType INT,
IndexLevel INT,
NextPageFID INT,
NextPagePID INT,
PrevPageFID INT,
PrevPagePID INT

)

INSERT INTO #DBCCIND
EXEC ('DBCC IND(''tempdb'', ''dbo.T1'', 0)');

CREATE CLUSTERED INDEX idx_cT1_prevpage ON #DBCCIND(PrevPageFID, PrevPagePID);

WITH LinkedList
AS
(
SELECT 1 AS RowNum, PageFID, PagePID
FROM #DBCCIND
WHERE IndexID = 1
AND IndexLevel = 0
AND PrevPageFID = 0
AND PrevPagePID = 0

214

Inside Microsoft SQL Server 2008: T-SQL Querying
UNION ALL

SELECT PrevLevel.RowNum + 1,
CurLevel.PageFID, CurLevel.PagePID
FROM LinkedList AS PrevLevel
JOIN #DBCCIND AS CurlLevel
ON CurLevel.PrevPageFID = PrevLevel.PageFID
AND CurlLevel.PrevPagePID = PrevlLevel.PagePID
)
SELECT
CAST(PageFID AS VARCHAR(MAX)) + ':'
+ CAST(PagePID AS VARCHAR(MAX)) + ' ' AS [text(Q)]
FROM LinkedList
ORDER BY RowNum
FOR XML PATH('')
OPTION (MAXRECURSION 0);

DROP TABLE #DBCCIND;

The code stores the output of DBCC IND in a temp table, then it uses a recursive query to
follow the linked list from head to tail, and then it uses a technique using the FOR XML PATH
option to concatenate the addresses of the leaf pages into a single string in linked list order.
| got the following output on my system, shown here in abbreviated form:

1:3672 1:1245 1:1460 1:670 1:3046 1:1994 1:1856 1:386 1:2903 1:1167 1:2785 1:663...

It's easy to observe logical fragmentation here. For example, page 1:3672 points to the page
1:1245, which is earlier in the file.

Next, run the following code to query T1:

SELECT SUBSTRING(CAST(c1_col AS BINARY(16)), 11, 6) AS segmentl, *
FROM dbo.T1;

The last 6 bytes of a UNIQUEIDENTIFIER value represent the first segment that determines
ordering; therefore, | extracted that segment with the SUBSTRING function so that it would
be easy to see whether the rows are returned in index order. The execution plan of this query
indicates a Clustered Index Scan, Ordered: False. However, because the environment is not
read-only and the isolation is the default read committed, the storage engine uses an index
order scan. This query returns the rows in the output in index order. For example, here’s the
output that | got on my system, shown in abbreviated form:

segmentl cl_col filler
0x0001EDAA3379 870FE202-4216-4BD2-9CF0-0001EDAA3379 a
0x000403806831 6F247C4D-A317-450F-B596-000403806831 a
0x0009A1FB7D6A 5EA6CC99-948C-4A10-8C37-0009A1FB7D6A a
0x000B6712B99C 1D545D02-6887-4F8A-A95F-000B6712B99C a
0x0021719D7298 38B2E138-E6F4-4B32-8E7D-0021719D7298 a
0x002BD242E426 1A22523F-0046-4A83-AD4A-002BD242E426 a
0x002FAFA27D1B 890693F4-0E5A-4120-8D8F-002FAFA27D1B a

Chapter 4 Query Tuning

0x006F682B4B92 2F1F94D1-0597-4755-87D8-006F682B4B92 a
0x007141F248CC D0125167-03DC-4790-8EF9-007141F248CC a
0x007980632C84 368F5CE4-413C-46B9-9AB3-007980632C84 a

Query the table again, this time with the NOLOCK hint:

SELECT SUBSTRING(CAST(cl_col AS BINARY(16)), 11, 6) AS segmentl, *

FROM dbo.T1l WITH (NOLOCK) ;

This time the storage engine employs an allocation order scan of the unsafe category. Here's

the output | got from this code on my system:

segmentl cl_col filler
0x014764C5D8EE 4F3B1F56-E906-4604-BEFD-014764C5D8EE a
0x01562FB6BA4F F806B778-4B95-4(83-8CD1-01562FB6BA4F a
0x01602D85E409 10812BEE-00C9-46E4-86E0-01602D85E409 a
0x656D2B798163 361A0DB6-BDF6-4B93-8D02-656D2B798163 a
O0x65A8EB2A6C4E CFCCCBB7-8BBD-4BED-9F6E-65A8EB2A6C4E a
0x65AF86168CA8 007CC2B4-3B4A-416F-ACCA-65AF86168CA8 a
O0x4A4BA14669E8 DE40A86F-B83A-4BC8-BC42-4A4BA14669E8 a
0xF27FCD39F328 71DFA3CA-3C15-40B5-8393-F27FCD39F328 a
OxF2871A254745 5483FEAC-52CC-4554-B1C4-F2871A254745 a
0x7BB93E98B826 36690994-2ED8-4DB6-98E4-7BB93E98B826 a

Notice that this time the rows are not returned in index order. If splits occur while such a read is
in progress, the read might end up returning multiple occurrences of rows and skipping rows.

As an example for an allocation order scan of the safe category, run the query with the
TABLOCK hint:

SELECT SUBSTRING(CAST(cl_col AS BINARY(16)), 11, 6) AS segmentl, *
FROM dbo.T1l WITH (TABLOCK);

Here, even though the code is running under the read committed isolation, the storage
engine knows that it is safe to use an allocation order scan because no one can change the
data during the read. | got the following output back from this query:

segmentl cl_col filler
0x014764C5D8EE 4F3B1F56-E906-4604-BEFD-014764C5D8EE a
0x01562FB6BA4F F806B778-4B95-4C83-8CD1-01562FB6BA4F a
0x01602D85E409 10812BEE-00C9-46E4-86E0-01602D85E409 a
0x656D2B798163 361A0DB6-BDF6-4B93-8D02-656D2B798163 a
O0x65A8EB2A6C4E CFCCCBB7-8BBD-4BED-9F6E-65A8EB2A6C4E a
0x65AF86168CA8 007CC2B4-3B4A-416F-ACCA-65AF86168CA8 a
0x4A4BA14669E8 DE40A86F-B83A-4BC8-BC42-4A4BA14669E8 a
O0xF27FCD39F328 71DFA3CA-3C15-40B5-8393-F27FCD39F328 a
OxF2871A254745 5483FEAC-52CC-4554-B1C4-F2871A254745 a
0x7BB93E98B826 36690994-2ED8-4DB6-98E4-7BB93E98B826 a

216

Inside Microsoft SQL Server 2008: T-SQL Querying

Next I'll demonstrate how an unsafe allocation order scan can return multiple occurrences of
rows. Open two connections (call them Connection 1 and Connection 2). Run the following
code in Connection 1 to insert rows into T1 in an infinite loop, causing frequent splits:

SET NOCOUNT ON;
USE tempdb;

TRUNCATE TABLE dbo.T1;

WHILE 1 =1
INSERT INTO dbo.T1l DEFAULT VALUES;

Run the following code in Connection 2 to read the data in a loop while Connection 1 is
inserting data:

SET NOCOUNT ON;
USE tempdb;

WHILE 1 =1
BEGIN
SELECT * INTO #T1 FROM dbo.T1 WITH(NOLOCK) ;

IF EXISTS(
SELECT cl_col
FROM #T1
GROUP BY cl1_col
HAVING COUNT(*) > 1) BREAK;

DROP TABLE #T1;
END

SELECT cl1_col, COUNT(*) AS cnt
FROM #T1

GROUP BY cl1_col

HAVING COUNT(*) > 1;

DROP TABLE #T1;

The SELECT statement uses the NOLOCK hint, and the plan shows Clustered Index Scan,
Ordered: False, meaning that the storage engine will likely use an allocation order scan of the
unsafe category. The SELECT INTO statement stores the output in a temporary table so that
it will be easy to prove that rows were read multiple times. In each iteration of the loop, after
reading the data into the temp table, the code checks for multiple occurrences of the same
GUID in the temp table. This can happen only if the same row was read more than once. If
duplicates are found, the code breaks from the loop and returns the GUIDs that appear more
than once in the temp table. When | ran this code, after a few seconds | got the following
output in Connection 2 showing all the GUIDs that were read more than once:

8DB22EB6-A2CF-4390-9402-CC4A7D92A174 2
B26AE864-EC15-481A-938C-9CC31288CE13 2

Chapter 4 Query Tuning 217

DD564EEE-C669-44A3-AB5B-46D010F6F9CF
EFB70510-C818-49AE-A889-46D0158A3BAD
48AA6FF8-D4BF-4628-8AFD-61ABC6361C65
59B1FBB5-0571-4EF2-9A96-EBAC9E51CF78
C21F5696-7B9C-4B8A-BB16-61A8FOF84CD8
E9BFB860-F720-493C-AF15-EBAC959BEAOD
DF75BFDA-772B-48CE-B048-CC494D57C489
DACE0814-9D15-4077-AB59-9CCO831DE9F2
5362C689-AC26-495E-8C4B-B442EF28BA9F

NN NN NN NDNNN

At this point you can stop the code in Connection 1.

If you want, you can rerun the test without the NOLOCK hint and see that the code in
Connection 2 doesn't stop because duplicate GUIDs are not found.

Next I'll demonstrate an unsafe allocation order scan that skips rows. Run the following code
to create the tables T1 and Sequence:

-- Create table T1
SET NOCOUNT ON;
USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(
cl_col UNIQUEIDENTIFIER NOT NULL DEFAULT(NEWIDQ)),
seq_val INT NOT NULL,
filler CHAR(2000) NOT NULL DEFAULT('a")

);

CREATE UNIQUE CLUSTERED INDEX idx_c1_col ON dbo.T1(c1_col);

-- Create table Sequence
IF OBJECT_ID('dbo.Sequence', 'U') IS NOT NULL DROP TABLE dbo.Sequence;

CREATE TABLE dbo.Sequence(val INT NOT NULL);
INSERT INTO dbo.Sequence(val) VALUES(0);

The table T1 is similar to the one used in the previous demonstration, but this one has an
additional column called seq_val that will be populated with sequential integers. The table
Sequence holds the last used sequence value (populated initially with 0), which will be
incremented by 1 before each insert to T1. To prove that a scan skipped rows, you simply
need to show that the output of the scan has gaps between contiguous values in the seq_val
column. To demonstrate this behavior, open two connections (again, call them Connection 1
and Connection 2). Run the following code from Connection 1 to insert rows into T1 in an
infinite loop, incrementing the sequence value by 1 in each iteration:

SET NOCOUNT ON;
USE tempdb;

UPDATE dbo.Sequence SET val = 0;
TRUNCATE TABLE dbo.T1;

218 Inside Microsoft SQL Server 2008: T-SQL Querying

DECLARE @nextval AS INT;

WHILE 1 =1

BEGIN
UPDATE dbo.Sequence SET @nextval = val = val + 1;
INSERT INTO dbo.T1l(seq_val) VALUES(@nextval);

END

Run the following code in Connection 2 while the inserts are running in Connection 1:

SET NOCOUNT ON;
USE tempdb;

DECLARE @max AS INT;
WHILE 1 =1
BEGIN
SET @max = (SELECT MAX(seq_val) FROM dbo.T1);
SELECT * INTO #T1 FROM dbo.T1 WITH(NOLOCK) ;
CREATE NONCLUSTERED INDEX idx_seq_val ON #T1l(seqg_val);

IF EXISTS(
SELECT *
FROM (SELECT seq_val AS cur,
(SELECT MIN(seq_val)
FROM #T1 AS N
WHERE N.seq_val > C.seqg_val) AS nxt
FROM #T1 AS C
WHERE seg_val <= @max) AS D
WHERE nxt - cur > 1) BREAK;

DROP TABLE #T1;
END

SELECT *
FROM (SELECT seq_val AS cur,
(SELECT MIN(seqg_val)
FROM #T1 AS N
WHERE N.seqg_val > C.seq_val) AS nxt
FROM #T1 AS C
WHERE seq_val <= @max) AS D
WHERE nxt - cur > 1;

DROP TABLE #T1;

This code runs an infinite loop that in each iteration reads the data using NOLOCK into a
temp table and breaks from the loop as soon as contiguous values with a gap between them
are found in the seq_val column. The code then presents the pairs of contiguous values that
have a gap between them. After a few seconds | got the following output in Connection 2,
shown here in abbreviated form:

cur nxt
53 55
620 622

Chapter 4 Query Tuning 219

803 805

838 840

1202 1204
1600 1602
1643 1645
1647 1649
1788 1791

You can stop the code in Connection 1.

You can run the test again without the NOLOCK hint, in which case the storage engine will
use an index order scan. The code in Connection 2 should not break from the loop because
gaps won't be found.

Index Order Scans If you think that index order scans are safe from phenomena such as
returning multiple occurrences of rows or skipping rows, think again. It is true that index
order scans are safe from such phenomena because of page splits, but page splits are not
the only reason for data to move around in the index leaf. Another cause of movement in
the leaf is update of an index key. If an index key is modified after the row was read by an
index order scan and the row is moved to a point in the leaf that the scan hasn't reached yet,
the scan will read the row a second time. Similarly, if an index key is modified before the row
is read by an index order scan and the row is moved to a point in the leaf that the scan has
already passed, the scan will never reach that row.

For example, suppose you have an Employees table that currently has four employee rows
(employee A with a salary of 2000, employee B with a salary of 4000, employee C with a
salary of 3000, and employee D with a salary of 1000). A clustered index is on the salary
column. Figure 4-32 shows in three steps how an index order scan can return multiple
occurrences of the same row because of an update that takes place during the read.

You issue a query against the table and the storage engine uses an index order scan.
Remember that an index order scan is always used when the plan shows Index Scan: Ordered:
True (for example, when the query has an ORDER BY clause), but also when the Ordered
property is False, the environment is read-write, and the isolation is not read uncommitted.

Step 1 shows that the scan already read the first page in the leaf level and returned the rows
for employees D, A, and C. If the query is running under read uncommitted, no shared locks
are acquired on the rows. If the query is running under read committed, shared locks are
acquired, but they are released as soon as the query is done with the resource (for example,
a row or page), even though the query hasn't finished yet. This means that at the point in
time that the scan is done with the page, in both isolations no locks are held on the rows that
were read.

Step 2 shows an update of the row for employee D, increasing the salary from 1000 to 5000.
The row moves to the second page in the leaf level because of the index key change.

220 Inside Microsoft SQL Server 2008: T-SQL Querying

Index Order Scan: Getting Multiple Occurrences of Rows
Step 1:

D 1000 B 4000
A 2000
C 3000

index order
scan

Output: D 1000, A 2000, C 3000

Step 2:
update
& 01— B 4000
2000 ™ D 5000
C 3000
index order
scan
Output: D 1000, A 2000, C 3000
Step 3:
A 2000 B 4000
C 3000 D 5000

index order scan———

Output: D 1000, A 2000, C 3000, B 4000, D 5000

FIGURE 4-32 Index order scan: getting multiple occurrences of rows

Step 3 shows the continuation of the scan, reading the second page in the leaf of the index,
returning the rows for employees B and D. Note that employee D was returned a second time.

Chapter 4 Query Tuning 221

The first time, the row was returned with salary 1000 and the second time with salary 5000.
Note that this phenomenon cannot happen in higher isolation levels than read committed
because higher isolations keep shared locks until the end of the transaction. This phenomenon
cannot happen also under the two isolation levels that are based on row versioning—read
committed snapshot and snapshot.

Similarly, an index order scan can skip rows. Figure 4-33 shows how this can happen in
three steps.

Index Order Scan: Skipping Rows

Step 1:
A 2000 B 4000
C 3000 D 5000
index order
scan

Output A 2000, C 3000

Step 2:
D 1000 B 4000
A2000 [psegg,| [update
C 3000

index order
—_—

scan
Output A 2000, C 3000

Step 3:

D 1000
A 2000
C 3000

B 4000

index order scan ——
Output A 2000, C 3000, B 4000

FIGURE 4-33 Index order scan: skipping rows

222

Inside Microsoft SQL Server 2008: T-SQL Querying

Employee D starts with salary 5000 this time, and its row resides in the second index leaf
page. Step 1 shows that the scan already read the first page in the leaf level and returned the
rows for employees A and C.

Step 2 shows an update of the row for employee D, decreasing the salary from 5000 to 1000.
The row moves to the first page in the leaf level because of the index key change.

Step 3 shows the continuation of the scan, reading the second page in the leaf of the index,
returning the rows for employee B. Note that the row for employee D was not returned at
all—neither with the salary 5000 nor with 1000. Note that this phenomenon can happen in
read uncommitted, read committed, and even repeatable read because the update was done
to a row that was not yet read. This phenomenon cannot happen in serializable isolation level
or in the snapshot-based isolations.

To see both phenomena with your own eyes, you can run a simple test. First, execute the
following code to create and populate the Employees table:

USE tempdb;
IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL DROP TABLE dbo.Employees;

CREATE TABLE dbo.Employees
(

empid VARCHAR(10) NOT NULL,

salary MONEY NOT NULL,

filler CHAR(2500) NOT NULL DEFAULT('a")
);

CREATE CLUSTERED INDEX idx_cl_salary ON dbo.Employees(salary);
ALTER TABLE dbo.Employees
ADD CONSTRAINT PK_Employees PRIMARY KEY NONCLUSTERED(empid);

INSERT INTO dbo.Employees(empid, salary) VALUES
('D', 1000.00),('A", 2000.00),('C', 3000.00),('B', 4000.00);

Open two connections. Run the following code in Connection 1 to run an infinite loop that
in each iteration updates the salary of employee D from its current value to 6000 minus its
current value (switching between the values 1000 and 5000):

SET NOCOUNT ON;
USE tempdb;

WHILE 1=1
UPDATE dbo.Employees
SET salary = 6000.00 - salary
WHERE empid = 'D';

This code causes the row for employee D to keep moving between the two index leaf pages.
Run the following code in Connection 2:

SET NOCOUNT ON;
USE tempdb;

Chapter 4 Query Tuning 223

WHILE 1 =1
BEGIN
SELECT * INTO #Employees FROM dbo.Employees;

IF @@rowcount <> 4 BREAK; -- use =3 for skipping, =5 for multi occur

DROP TABLE #Employees;
END

SELECT * FROM #EmpTloyees;
DROP TABLE #Employees;

The code runs an infinite loop that reads the contents of the Employees table into a temp
table. Because the code doesn't specify the NOLOCK hint and the environment is read-write,
the storage engine uses an index order scan. The code breaks from the loop when the
number of rows read is different than the expected number (four). In case the scan reads the
same row twice, this code returns five rows in the output:

D 1000.00 a
A 2000.00 a
C 3000.00 a
B 4000.00 a
D 5000.00 a

empid salary filler
A 2000.00 a
C 3000.00 a
B 4000.00 a

You can change the filter to = 3 to wait for a case where the row is skipped, and you can
change it to = 5 to wait for a case where the row is read twice.

| hope this section gave you a better understanding of how the storage engine handles scans
and, most important, the implications of running your code under the read uncommitted
isolation level. The next sections continue the coverage of index access methods.

Nonclustered Index Seek + Ordered Partial Scan + Lookups

The access method nonclustered index seek + ordered partial scan + lookups is typically
used for small-range queries (including a point query) using a nonclustered index scan that
doesn't cover the query. To demonstrate this access method, | will use the following query:

USE Performance;

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders
WHERE orderid BETWEEN 101 AND 120;

224

Inside Microsoft SQL Server 2008: T-SQL Querying

We don't have a covering index because the first key column is the filtered column orderid,
but we do have a noncovering one—the PK_Orders index. If the query is selective enough,
the optimizer would use the index. Selectivity is defined as the percentage of the number
of rows returned by the query out of the total number of rows in the table. The term high
selectivity refers to a small percentage, while low selectivity refers to a large percentage. Our
access method first performs a seek within the index to find the first key in the sought range
(orderid = 101). The second part of the access method is an ordered partial scan in the leaf
level from the first key in the range until the last (orderid = 120). The third and last part
involves lookups of the corresponding data row for each key. Note that the third part doesn't
have to wait for the second part to finish. For each key found in the range, SQL Server can
already apply a lookup. Remember that a lookup in a heap (a RID lookup) translates to a
single page read, while a lookup in a clustered table (a key lookup) translates to as many
reads as the number of levels in the clustered index (three in our case).

It is vital for making performance estimations to understand that with this access method,
the part involving the lookups typically incurs most of the query’s cost; this is because it
involves most of the 1/O activity. Remember that the lookup translates to a whole page read
or one whole seek within the clustered index per sought row, and the lookups are always
random 1/O (as opposed to sequential ones).

To estimate the I/O cost of such a query, you can typically focus on the cost of the lookups. If
you want to make more accurate estimations, also taking into consideration the seek within
the index and the ordered partial scan, feel free to do so, but these parts will be negligible
as the range grows larger. The I/O cost of a seek operation is three reads in our case (the
number of levels in the index). The 1/O cost of the ordered partial scan depends on the
number of rows in the range (20 in our case) and the number of rows that fit in an index
page (more than 300 in our case). For our query, no additional read is actually involved for
the partial scan because all the keys in the range we are after reside in the leaf page that the
seek reached, or they might span an additional page if the first key appears close to the end
of the page. The I/O cost of the lookup operations will be the number of rows in the range
(20 in our case), multiplied by one if the table is a heap or multiplied by the number of levels
in the clustered index (3 in our case) if the table is clustered. So you should expect around

23 logical reads in total if you run the query against a heap and around 63 logical reads if
you run it against a clustered table. Remember that the nonleaf levels of the clustered index
typically reside in cache because of all the lookup operations going through it; you shouldn't
concern yourself too much with the seemingly higher cost of the query in the clustered table
scenario.

Figure 4-34 shows the execution plan for the query over a heap, and Figure 4-35 shows an
illustration of the access method.

—'—| B
Mested Loops
{(Inner Join)

Cost: O 3%
RID Lookup (Heap)

RID Lookup

Physical Operation RID Lookup
Logical Operation RID Lookup
Actual Number of Rows

Estimated IfO Cost 0.003125
Estim ated CPU Cost 00001581

Mumber of Executions

Estim ated Number of Executions 20,6807
Estimated Operator Cost 00647451 (95%)
Estimated Subtree Cost 00647481

Estim ated Number of Rows

Estim ated Row Size 36 B

Actual Rebinds
Actual Rewinds

Ordered True

Mode ID

Object

[Performance?] [dbo][Orders]

Qutput List

[Perfarmance?].[dbo].[Orders].custid, [Peformancel].
[dbol[Orderslernpid, [Performance2].[dbal.
[Orderslshipperid, [Performancez].[dbal.
[Orders].orderdate

Seek Predicates

Seek Keys[1]: Prefiz Emk1000 = Scalar Operator
([Bmk1000])

FIGURE 4-34 Nonclustered index seek + ordered partial scan + lookups against a heap (execution plan)

Pointer to
root

Compute Scalar
Cost: 0%

o
44

Chapter 4 Query Tuning

4
Index Seek (MonClustered)

[Orders]. [PK_Orders]
Cost: 5 %

Index Seek [MonClustered)
Scan a particular range of roves from a nonclustered

RID Lookup (Heap) index

[Orders]
Cost: 9% %

ff"”"'

Nonclustered

Physical Operation Index Seek
Logical Operation Index Seek
Actual Number of Rows 20

Estimated IfO Cost 0003125
Estimated CPU Cost 0.0001787
Estimated Number of Executions 1
Mumber of Executions 1
Estimated Operator Cost 0.0033048 (5%6)
Estimated Subtree Cost 00033048
Estimated Number of Rows 20,6807
Estimated Row Size 198
Actual Rebinds]
Actual Rewinds]
Ordered True
Node ID 3
Object

[Performance2] [dbao].[Orders].[PE_Orders]

Qutput List

Brnk1000, [Performanced][dbo].[Orders].orderid
Seek Predicates

Seek Keys[1]: Start: [Perforrnance?] [dba],
[Ordersl.iorderid »= Scalar Operator({101}), End:
[Performance].[dbo].[Orders].orderid <= Scalar
Operator((1200)

Heap

Index
—p
e PR
g R g o [—
— T (e - =
A\
= S——

FIGURE 4-35 Nonclustered index seek + ordered partial scan + lookups against a heap

225

226 Inside Microsoft SQL Server 2008: T-SQL Querying

Note that in the execution plan you won't explicitly see the partial scan part of the access
method; rather, it's hidden in the Index Seek operator. You can deduce it from the Seek
Predicates shown in the information box for the operator and from the fact that it shows True
in the Ordered property.

Here are the performance measures | got for the query:

B Logical reads 23

B Physical reads 22

® CPUtime Oms

B Elapsed time 437 ms

B Estimated subtree cost 0.0681393

Figure 4-36 shows the execution plan of the query over a clustered table, and Figure 4-37
shows an illustration of the access method.

- ic] !

Mested Loops Index Seek (NonClustered)
{Inner Joind [Orders]. [PK_orders]
Cost: O % Cost: 5 %

Index Seek (NonClustered] / |

Scan a particular range of rous frorm a nonclustered

i)
index. Key Lookup (Clustered)

[Orders]. [1dx_cl_od]
Physical Operation Index Seek Cost: 95 %
Logical Operation Index Seek Key Lookup [Clustered)
Actual Number of Rows 20 Uses a supplied clustering key to lookup on a table that
Estimated I[fO Cost 0003125 | has 3 clustered index.
Estim ated CPU Cost 00001787
H Ordered True Phy.sical Opera.linn Key Lookup
Node ID 3 Logical Operation Key Lookup
Actual Number of Rows 20
Object Estimated IO Cost 0.003125
[Performance].[dba].[OrdersL[PK_Orders] | Estimated CRU Cast LIS
Output List Ordered True
Uniglonz, [Performance].[dbol.[Orders].orderid, MNode ID 4
[Performance].[dbo].[Orderslorderdate
Seek Predicates Object
Sée; Kerﬁ[ld]i S_;aft: [;erflor"gancel-[dbﬁ]i - [Perfarmancel.[dbol.[Orders] fidx_cl_od]
[Orderslarderid == Scalar Operator{{(101}), End: Output List

[Perfarmance].[dba].[Orders].orderid <= Scalar

Operstor((120}) [Performance].[dba].[Orders].custid, [Performance].

[dba].[Orders].ermpid, [Perfarmance].[dbao].
[Orders].shipperid

Seek Predicates

Seek Keys[1]: Prefix [Performance] [dbo],
[Orders].orderdate, Uniglll2 = Scalar Operator
{[Perfarmance][dbal.[Crders].[orderdate]), Scalar
Operatar([Unigl002]}

FIGURE 4-36 Nonclustered index seek + ordered partial scan + lookups against a clustered table
(execution plan)

Chapter 4 Query Tuning 227

Pointer to
root
Nonclustered
Index
> —p
- e
g - I - ___
— T2 E —==C led T
gl [——
Clustered
Index
> —p
- -
—
v
RN g (Y SRR nq (RS g (S i [I
IR AN IR IR) A
-l -l == | ===z —-=—zC

FIGURE 4-37 Nonclustered index seek + ordered partial scan + lookups against a clustered table
Here are the performance measures | got for the query in this case:

B Logical reads 63

B Physical reads 7

® CPUtime Oms

B Elapsed time 189 ms

B Estimated subtree cost 0.0681399

Notice that the graphical execution plans distinguish between a RID lookup and a key
lookup. The latter is a seek within the clustered index.

228

Inside Microsoft SQL Server 2008: T-SQL Querying

This access method is efficient only when the query is very selective (a point query or a small
range). Feel free to play with the range in the filter, increasing it gradually, and see how
dramatically the cost increases as the range grows larger. That will happen up to the point at
which the optimizer figures that it would simply be more efficient to apply a table scan rather
than using the index. I'll demonstrate such an exercise later in the chapter, in the section
“Analysis of Indexing Strategies.”

Unordered Nonclustered Index Scan + Lookups

The optimizer typically uses the unordered nonclustered index scan + lookups access method
when the following conditions are in place:

B The query is selective enough.
B The optimal index for a query does not cover it.

B The index doesn't maintain the sought keys in order.

For example, such is the case when you filter a column that is not the first key column in the
index. The access method will involve an unordered full scan of the leaf level of the index,
followed by a series of lookups. As | mentioned, the query must be selective enough to
justify this access method; otherwise, with too many lookups it will be more expensive than
simply scanning the whole table. To figure out the selectivity of the query, SQL Server needs
statistics on the filtered column (a histogram with the distribution of values). If such statistics
do not exist, SQL Server creates them, provided that the database property AUTO_CREATE_
STATISTICS is turned on.

For example, the following query uses such an access method against the index idx_nc_sid_
od_i_cid, created on the key columns (shipperid, orderdate) and the included column (custid);
what's important about this index is that the custid column appears in the index leaf rows but
not as the first key column:

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders
WHERE custid = 'C0000000001";

Figure 4-38 shows the execution plan for the query over a heap, and Figure 4-39 illustrates
the access method.

The Parallelism operators indicate that the plan is a parallel query plan utilizing multiple
threads to process the query. The Repartition Streams operator produces multiple streams of
records, while the Gather Streams operator consumes multiple input streams and produces a
single output stream.

Chapter 4 Query Tuning 229

Query 1: Query cost (relative to the batch): 100%
SELECT [orderid], [custid], [empid], [shipperid], [crderdate] FROM [dbo].
Missing Index (Impact 99.244): CREATE NONCLUSTERED INDEX [<Name of Mi

—
ig! = % by
~ MNested Loops Comsute ._Sca'lar“ Parallelism Index Scan (MonClustered)
{Inner Join) CF::)st' 0% (Repartition Streams) [Orders]. [idx_nc_sid_od_.
Cost: 0 % : " Cost: 6 % Cost: B7 %
Index Scan [NonClustered)
o, Sran a nonclustered index, entirely or only a range,
= Physical Operation Index Scan
RID Lookup (Heap) Logical Operation Index Scan
[Orders] Actual Number of Rows 45
Cost: 7 % Estimated /O Cost 120978
Estimated CPU Cost 0530079
Estimated Number of Executions 1
Number of Executions ?
;.qd Estimated Operator Cost 3.T598T (BT
= . Estimated Subtree Cost 3.75987
Parallelism - Estimated Number of Rows 88,3256
(Gather Streams) ot 5
X . stimated Row Size 40 B
Cost: 1% Actual Rebinds 0
Actual Rewinds 0
Ordered False
Node ID f
Predicate
[Performance2] [dbal.[Orders].[custid]
='Coonnoonnnt’
Object
[Performance?].[dbo].[Orders].[ids_nc_sid_od_i_cid]
Qutput List
Brnk1000, [Performance?].[dbo].[Orders].custid,
[Peforrmance2].[dbol [Orders].shipperid,
[Performance].[dbol.[Orders].orderdate

FIGURE 4-38 Unordered nonclustered index scan + lookups against a heap (execution plan)

Nonclustered
Index

Heap

FIGURE 4-39 Unordered nonclustered index scan + lookups against a heap

The I/O cost of this query involves the cost of the unordered scan of the leaf of the index
(see the section "The Storage Engine’s Treatment of Scans” for details about how scans are

230

Inside Microsoft SQL Server 2008: T-SQL Querying

processed) plus the cost of the lookups (random 1/O). In terms of logical reads, the scan
will cost as many page reads as the number of pages in the leaf of the index. As described
earlier, the cost of the lookups is the number of qualifying rows multiplied by 1 in a heap
and multiplied by the number of levels in the clustered index (3 in our case) if the table is
clustered. Here are the measures | got for this query against a heap:

Logical reads 4460

Physical reads 94

Read-ahead reads 4706

CPU time 141 ms

Elapsed time 2105 ms
Estimated subtree cost 4.31519

Figure 4-40 shows the execution plan for the query over a clustered table, and Figure 4-41
illustrates the access method.

Query 1: Query cost (relative to the batch): 100%
SELECT [orderid], [custid], [empid], [shipperid], [orderdate] FROM [dbo].
Missing Index (Impact 99.9174): CREATE NONCLUSTERED INDEX [<Name of b

= ic]]
Mested Loops Index Scan (MonClustered)
(Inner Joind [Orders]. [Hdx_nc_sid_od_..
Cost: 10 % Cost: BE X
Index Scan (NonClustered) C
Scan a nonclustered index, entirely or only a range, g
Physical Operation Index Scan Key Lookup (Clustered)
Logical Operation Index Scan [orders]. [1dx_cl_od]
Actual Number of Rows 34 Cost: 2 %
Estimated I}O Cost 302683
Estimated CPU Cost 110016
Estim ated Number of Executions 1
Mumber of Executions 1
Estimated Operator Cost 412699 (9%
Estimated Subtree Cost 4126499
Estimated Number of Rows 235681
Estimated Row Size 36 B
Actual Rebinds]
Actual Rewinds]
Ordered False
Node ID 2
Predicate
[Performance].[dbo].[Orders].[custid]="CO000000001"
Object
[Performance].[dba]. [Orders].[ick_nc_sid_od_i_cid]
Output List
Unigli02, [Perfarmance] [dba]. [Orders].custid,
[Perfarmance].[dba]. [Orders]shipperid,
[Perfarmance].[dbo].[Crders].arderdate

FIGURE 4-40 Unordered nonclustered index scan + lookups against a clustered table (execution plan 1)

Chapter 4 Query Tuning

Nonclustered
Index

S ——) T
Clustered
Index
]
> —p
- -
I MM _—_—_”“_rM-_-_-_ -
o — - e =T ===

FIGURE 4-41 Unordered nonclustered index scan + lookups against a clustered table

Here are the measures | got for this query against a clustered table:

Logical reads 4262

Physical reads 70

Read-ahead reads 4099

CPU time 202 ms

Elapsed time 2732 ms
Estimated subtree cost 4.68131

231

As you can see in Figure 4-40, in this case SQL Server decided not to use a parallel query plan.

Remember that SQL Server needs statistics on the custid column to determine the selectivity of
the query. The following query will tell you which statistics SQL Server created automatically
on the Orders table:

SELECT name

FROM sys.stats

WHERE object_id = OBJECT_ID('dbo.Orders")
AND auto_created = 1;

232

Inside Microsoft SQL Server 2008: T-SQL Querying

You should get statistics with a name similar to _WA_Sys_00000002_7A672E12, which SQL
Server created automatically for this purpose.

You may have noticed in both Figure 4-38 and Figure 4-40 that SSMS indicates a missing
index, with an estimated impact (improvement) of more than 99 percent. When the optimizer
optimized this query, it looked for what it considers to be an optimal index, and because it
did not find it, it reported the missing index. The XML showplan of the query reports missing
index information in the MissingIndexes attribute; SSMS parses this information and displays
it graphically. Similar information was also available in the XML showplan in SQL Server 2005,
but SSMS 2005 did not present it graphically as part of the graphical execution plan the

way SSMS 2008 does. If you right-click the missing index information and choose Missing
Index Detail, SSMS opens a new query window with the CREATE INDEX statement for the
recommended index. In our case, you get the following code:

/:‘:

Missing Index Details from SQLQueryl.sql - DOJO\SQLO8.Performance (DOJO\Gandalf (51))

The Query Processor estimates that implementing the following index could improve the query
cost by 99.9174%.

s’:/

/:‘:

USE [Performance]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [dbo].[Orders] ([custid])

INCLUDE ([orderid], [empid], [shipperid], [orderdate])

GO

*/

SQL Server also records such missing index information internally and exposes it through the
dynamic management objects sys.dm_db_missing_index_details, sys.dm_db_missing_index_
group_stats, sys.dm_db_missing_index_groups, and sys.dm_db_missing_index_columns. Query
those objects to get missing index information that was collected since SQL Server was last
restarted.

Let's return to the access method that is the focus of this section. A similar access method
can be used when you apply pattern-matching filters with the LIKE predicate, even when
the pattern starts with a wildcard. SQL Server internally maintains cardinality information on
substrings within string columns. Therefore, it can estimate the selectivity of a query for such
filters.

To demonstrate this capability, SQL Server will be able to estimate the selectivity of the
following query, which produces the plan shown in Figure 4-42:

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders
WHERE custid LIKE '%9999';

Chapter 4 Query Tuning 233

i ¥ k%
Mested Loops Parallelism Index Scan (MNonClustered)
(Inner Join) [Repartition Streams) [Orders]. [Tdx_nc_sid_od_.
Cost: 0 % Cost: 11 % Cost: 86 %

il
Key Lookup Et]ustered)

[Orders]. [1dx_c1_od]
Cost: 2 %

5 =
Parallelism -

(Gather Streams)
Cost: 1%

FIGURE 4-42 Unordered nonclustered index scan + lookups against a clustered table (execution plan 2)

Here are the performance measures that | got for this query:
B |ogical reads 4634
B Physical reads 90
B Read-ahead reads 4819
® CPUtime 811 ms
B Elapsed time 2667 ms
B Estimated subtree cost 4.13886

Clustered Index Seek + Ordered Partial Scan

The optimizer typically uses the access method clustered index seek + ordered partial scan

for range queries where you filter based on the first key columns of the clustered index.

This access method first performs a seek operation to the first key in the range, and then it
applies an ordered partial scan at the leaf level from the first key in the range until the last.
The main benefit of this method is that no lookups are involved. Remember that lookups are
very expensive with large ranges. The performance ratio between this access method—which
doesn't involve lookups—and one that uses a nonclustered index and lookups becomes
larger and larger as the range grows.

The following query, which looks for all orders placed on a given orderdate, uses the access
method, which is the focus of this discussion:

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders
WHERE orderdate = '20080212"';

Note that even though the filter uses an equality operator, it is in essence a range query
because there are multiple qualifying rows. Either way, a point query can be considered a
special case of a range query. The 1/O cost of this access method will involve the cost of the
seek operation (3 random reads in our case) and the cost of the ordered partial scan within
the leaf (in our case, 19 page reads). In total, you get 22 logical reads. Note that the ordered

234

Inside Microsoft SQL Server 2008: T-SQL Querying

scan typically incurs the bulk of the cost of the query because it involves most of the I/O.
Remember that with index order scans, logical index fragmentation plays a crucial role.
When fragmentation is at a minimum (as in our case), physical reads are close to sequential.
However, as the fragmentation level grows higher, the disk arm has to move frantically to and
fro, degrading the performance of the scan.

Figure 4-43 shows the execution plan for the query, and Figure 4-44 illustrates the access method.

ﬂ |'ﬁ1
Clustered Index Seek (C1
[orders]. [Tdx_c1_od]
Cost: 100 %

Clustered Index Seek (Clustered)
Scanning a particular range of rowes from a clustered index,
Physical Operation Clustered Index Seek
Logical Operation Clustered Index Seek
Actual Number of Rows 1]
Estimated I/O Cost 0.015107
Estimated CPU Cost 00004127
Estimated Number of Executions 1
Mumber of Executions 1
Estimated Operator Cost 00160187 (100%)
Estimated Subtree Cost 0.0160197
Estimated Number of Rows 687y
Estimated Row Size 408
Actual Rebinds I
Actual Rewinds I
Ordered True
Node ID I
Object
[Performance].[dbol.[Orders].[idx_cl_od]
Qutput List
[Performance].[dbo].[Ordersl.orderid, [Performance].[dbo].
[Orders].custid, [Performance].[dbo] [Orders].empid,
[Perfarmance].[dbo].[Orders].shipperid, [Performance].[dba].
[Orders].orderdate
Seek Predicates
Seek Keys[1]: Prefiz [Performance].[dbo] [Orders]orderdate
= Scalar Operator{’2008-02-12 00:00:00,000°%

FIGURE 4-43 Clustered index seek + ordered partial scan (execution plan)

Pointer to
root
Clustered
Index

] —

] P
—>| —> > —
—| —| | -

FIGURE 4-44 Clustered index seek + ordered partial scan

Chapter 4 Query Tuning 235

Here are the performance measures | got for this query:

B |ogical reads 22

B Physical reads 3

B Read-ahead reads 19

® CPUtime 0 ms

B Elapsed time 148 ms

B Estimated subtree cost 0.0160197

Note that this plan is trivial for the optimizer to generate. That is, the plan is not dependent
on the selectivity of the query. Rather, it will always be used regardless of the size of the
sought range, unless, of course, you have an even better index for the query to begin with.

Covering Nonclustered Index Seek + Ordered Partial Scan

The access method covering nonclustered index seek + ordered partial scan is almost identical
to the previously described access method. The only difference is that the former uses a
covering nonclustered index instead of the clustered index. Of course, to use this method
the filtered columns must be the first key columns in the index. The benefit of this access
method over the previous one lies in the fact that a nonclustered index leaf page naturally
can fit more rows than a clustered index one; therefore, the bulk cost of the plan, which is
the partial scan cost of the leaf, is lower. The cost is lower because fewer pages need to be
scanned for the same size of the range. Of course, here as well, index fragmentation plays an
important performance role because the partial scan is ordered.

As an example, the following query looking for a range of orderdate values for a given
shipperid uses this access method against the covering index idx_nc_sid_od_i_cid, created on
the key list (shipperid, orderdate) and included list (custid):

SELECT shipperid, orderdate, custid
FROM dbo.Orders
WHERE shipperid = 'C'

AND orderdate >= '20080101'

AND orderdate < '20090101';

Note To have the partial scan read the minimum required pages, the first index key columns
must be shipperid, orderdate, in that order. If you swap their order, the partial scan will end up
also scanning rows that meet the date range also for other shippers, requiring more 1/0O.

Figure 4-45 shows the execution plan for the query, and Figure 4-46 illustrates the access
method.

236

Inside Microsoft SQL Server 2008: T-SQL Querying

B

%

Index Seek (MonClustered) Scan a particular range of rows from a nonclustered

[Orders]. [fdx_nc_sid_od_.

Cost:

100 %

Index Seek (NonClustered)

index,

Physical Operation Index Seek
Logical Operation Index Seek
Actual Number of Rows 43848
Estimated I/O Cost 0,152753
Estimated CPU Cost 0.05473249
Estimated Number of Executions 1
MNumber of Executions 1
Estimated Operator Cost 0207487 {100%)
Estimated Subtree Cost 0,207 487
Estimated Mumber of Rows 40614.4
Estimated Row Size XN
Actual Rebinds]
Actual Rewinds]
Ordered True
Node ID 1]
Object
[Performance].[dbo]Orders][idx_ne_sid_od_i_cid]
Qutput List

[Performance].[dbol.[Orders].custid, [Performance].
[dbol[Crderslshipperid, [Performance][dbol,
[Orders].orderdate

Seek Predicates

Seek Keyws[1]: Prefic [Performance].[dbo].
[Orders].shipperid = Scalar Operatar([@1]), Start:
[Performance].[dbo].[Orders].arderdate »= Scalar
Operator{COMNVERT_IMPLICTT (datetime, [@2],03), End:
[Performance].[dbo][Orders].arderdate < Scalar
Operator{COMNVERT_IMPLICIT (datetime, [@3], 1)

FIGURE 4-45 Covering nonclustered index seek + ordered partial scan (execution plan)

Pointer
root

to

Nonclustered

Index
| —p
o e
—— == | —

FIGURE 4-46 Covering nonclustered index seek + ordered partial scan

Here are the performance measures | got for this query:

Logical reads 211
CPU time 16 ms

Elapsed time 1195 ms

Estimated subtree cost 0.207487

Chapter 4 Query Tuning 237

Note that this plan is also a trivial plan that is not based on the query’s selectivity.

Remember, the main benefit of this access method is that no lookups are involved because
the index covers the query. Also, you read fewer pages than in a similar access method
against a clustered index.

Also note that when you create covering indexes, the index columns serve two different
functions. Columns that you filter or sort by are required as key columns that will be
maintained in all levels of the balanced tree, and they also determine the sort order at the
leaf. Other index columns might be required only for covering purposes. If you include all
index columns in the index’s key column list, bear the cost in mind. SQL Server needs to keep
the tree balanced, and it will have to apply physical movement of data and adjustments

in the tree when you modify key column values in the table. That's just a waste with

columns that are required only for covering purposes and not for filtering or sorting.

To tackle this need, SQL Server supports the concept of included nonkey columns in the
index. When you create an index, you separately specify which columns will make the key
list and which will be included just for covering purposes—only at the leaf level of the index.

For example, our last query relied only on shipperid and orderdate for filtering and sorting
purposes, while it relied on custid only for covering purposes. Therefore, the index that
was defined to support this query (idx_nc_sid_od_i_cid) specified the custid attribute in the
INCLUDE clause. Here's the original index definition:

CREATE NONCLUSTERED INDEX 1idx_nc_sid_od_i_cid
ON dbo.Orders(shipperid, orderdate)
INCLUDE (custid);

Recall that earlier | discussed the following query:

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders
WHERE custid = 'C0000000001";

The plan that the optimizer created for it was an unordered nonclustered index scan + lookups
since no better index was in place. The optimizer reported a missing index, and the index it
recommended was on custid as the key and all other columns as included columns. Run the
following code to create such an index:
CREATE INDEX idx_nc_cid_i_oid_eid_sid_od

ON dbo.Orders(custid)

INCLUDE (orderid, empid, shipperid, orderdate);

Run the query and notice how this time the number of logical reads drops to 3! Remember
that without the index the number of logical reads was more than 4,000.

Run the following code to remove the index:

DROP INDEX dbo.Orders.idx_nc_cid_i_oid_eid_sid_od;

238

Inside Microsoft SQL Server 2008: T-SQL Querying

Run the query again and notice how the number of logical reads goes back to over 4,000.

Note that the key list is limited to 16 columns and 900 bytes. An added bonus with included
nonkey columns is that they are not bound by the same limitations. In fact, they can even include
large objects such as variable-length columns defined with the MAX specifier and XML columns.

Index Intersection

So far, I've focused mainly on the performance benefit you get from indexes when reading
data. Keep in mind, though, that indexes incur a cost when you modify data. Any change

of data (deletes, inserts, updates) must be reflected in the indexes that hold a copy of that
data, and it might cause page splits and adjustments in the balanced trees, which can be

very expensive. Therefore, you cannot freely create as many indexes as you like, especially

in systems that involve intensive modifications, such as OLTP environments. You want to
prioritize and pick the more important indexes. This is especially a problem with covering
indexes because different queries can benefit from completely different covering indexes, and
you might end up with a very large number of indexes that your queries could benefit from.

Fortunately, the problem is somewhat reduced because the optimizer supports a technique
called index intersection, where it intersects data obtained from two indexes and, if required, then
intersects the result with data obtained from another index and so on. For example, the optimizer
will use index intersection for the following query, producing the plan shown in Figure 4-47:

SELECT orderid, custid
FROM dbo.Orders
WHERE shipperid = 'A'";

Query 1: qQuery cost (relative to the batch): 100%
SELECT [orderdid], [custid] FROM [dbo].[0rders] WHERE [shipperid]=@1
Missing Index (Impact 95.4931): CREATE NONCLUSTERED INDEX [<Name of 1

=1 e H s
Hash Match Ei tmap Parallelism Index Seek (MonClustered)
(Inner Join) (Eitmap Create) (Repartition Streams) [orders]. [idx_nc_sid_od_..
Cost: 50 % Cost: 0% Cost: 4 % Cost: 5 %
by, %
= bt =
Parallelism Index Scan (MonClustered)
(Repartition Streams) [Orders]. [PE_Orders]
Cost: 18 % Cost: 20 %
] =
Parallelism -
({Gather Streams)
Cost: 3 %

FIGURE 4-47 Execution plan with index intersection

| will elaborate on join operators in Chapter 7. The optimal index here would be one where
shipperid is defined as the key column and orderid and custid are defined as included nonkey
columns but no such index is on the table. Rather, the index idx_nc_sid_od_i_cid defines the

Chapter 4 Query Tuning 239

shipperid as the key column and also contains the custid column, and the index PK_Orders
contains the orderid column. The optimizer used the access method nonclustered index seek
+ ordered partial scan to obtain the relevant data from idx_nc_sid_od_i_cid, and it used an
unordered nonclustered index scan to obtain the relevant data from PK_Orders. It then inter-
sected the two sets based on the row locator values; naturally, row locator values pointing to
the same rows will be matched. You can think of index intersection as an internal join based
on a match in row locator values.

Here are the performance measures that | got for this query:

B Scancount 6

B |ogical reads 3771

B Physical reads 84

B Read-ahead reads 672

B CPUtime 1248 ms

B FElapsed time 4357 ms

B Estimated subtree cost 13.0864

Filtered Indexes and Statistics

SQL Server 2008 introduces support for filtered indexes and statistics. A filtered index is an index
on a subset of rows defined based on a predicate. Filtered indexes are cheaper to create and

to maintain compared to nonfiltered ones because only modifications to the relevant subset of
rows need to be reflected in the index. Also, filtered distribution statistics (histograms)—whether
created on the first index key column or otherwise—are more accurate than nonfiltered
statistics. That's because the maximum number of steps in a histogram is limited, and with
filtered statistics that number is used to represent a smaller set of rows.

I'll provide several scenarios in which you may find filtered indexes useful. The first scenario
involves queries that filter data based on a column that has a large percentage of NULLs. When
filtering rows based on a predicate in the form <column> <operator> <value>, the filter eliminates
rows with a NULL in that column. The optimizer is well aware of this fact. Therefore, if you create
an index on this column excluding rows where the column is NULL, the optimizer will still consider
using the index for such predicates. The following example demonstrates this capability.

Run the following code to create an index on the Sales.SalesOrderHeader table in the
AdventureWorks2008 database with CurrencyRatelD as the key and a filter based on the
predicate CurrencyRatelD IS NOT NULL:

USE AdventureWorks2008;

CREATE NONCLUSTERED INDEX qidx_currate_notnull
ON Sales.SalesOrderHeader(CurrencyRatelID)
WHERE CurrencyRateID IS NOT NULL;

240

Inside Microsoft SQL Server 2008: T-SQL Querying

Run the following query and notice in its execution plan (shown in Figure 4-48) that the
index was used:

SELECT *
FROM Sales.SalesOrderHeader
WHERE CurrencyRateID = 4;

ie] = | 4
Mested Loops = Index Seek (NonClustered)
(Inner Join) COT&;;? ifz)ar [salesOrderdHeader]. [idx_currate_notnull]
Cost: 0 % : " Cost: 43 %

= i
i Key Lookup (Clustered)
|Sales0OrderHeader]. [FK_S..
Cost: 57 %

Compute Scalar
Cost: O %

FIGURE 4-48 Execution plan with filtered index idx_currate_notnull

Another scenario for using filtered indexes is to support queries that use a range filter against
a certain column, and the ranges requested by users are typical. For example, suppose that
when users query orders and filter the orders based on a range of freight values, they tend to
be interested in cases where the freight is worth more than $5,000. In such a case, it makes
sense to create the following filtered index where the Freight attribute is greater than or
equal to $5,000:

CREATE NONCLUSTERED INDEX idx_freight_5000_or_more
ON Sales.SalesOrderHeader(Freight)
WHERE Freight >= $5000.00;

The optimizer would then consider using the index even when the query filter is after
a subinterval of the index filter. For example, run the following query and notice in its
execution plan (shown in Figure 4-49) that the index is used:

SELECT *
FROM Sales.SalesOrderHeader
WHERE Freight BETWEEN $5500.00 AND $6000.00;

te] i | 4
Mested Loops Index Seek (MonClustered)

[Inner Joind Compute Scalar [SalesOrderHeader]. [dx_freight_5000_or_more]

Cost: 0 % tost: O % Cost: 50 %
3 C
- key Lookup [Clustered)
Compute Scalar
Cost: 0 % |SalesOrderHeader]. [PK_S.

Cost: 30 %

FIGURE 4-49 Execution plan with filtered index idx_freight_5000_or_more

Filtered indexes support the INCLUDE clause. For example, run the following code to create
an index on the Sales.SalesOrderHeader table, with the attribute OrderDate as the key, the

Chapter 4 Query Tuning 241

attributes SalesOrderID, CustomerlD, TotalDue as included columns, and a filter based on the
predicate TerritorylD = 5:

CREATE NONCLUSTERED INDEX idx_territory5_orderdate
ON Sales.SalesOrderHeader(OrderDate)
INCLUDE(SalesOrderID, CustomerID, TotalDue)
WHERE TerritoryID = 5;

This index covers the following query:

SELECT SalesOrderID, CustomerID, OrderDate, TotalDue
FROM Sales.SalesOrderHeader
WHERE TerritoryID = 5;

The plan for this query is shown in Figure 4-50.

EX
T _:j d Eid 1 d)
e Index Scan (MonClustere
Coqgiii %f%;ar [Sales0rderHeader]. [1dx_territorvi_orderdate]

Cost: 99 %

FIGURE 4-50 Execution plan 1 with filtered index idx_territory5_orderdate

All index rows are needed by the query because the query'’s filter is based on the same
predicate as the index filter; therefore, the optimizer chooses a full scan of the index. If your
query asks to further filter the rows based on a range of order dates, the optimizer would
use a seek followed by a partial scan in the index. The following query demonstrates such a
request, and its plan is shown in Figure 4-51:

SELECT SalesOrderID, CustomerID, OrderDate, TotalDue
FROM Sales.SalesOrderHeader
WHERE TerritoryID = 5

AND OrderDate >= '20040101"';

. 3 3!
e Index Seek (NonClustered)
COTgi:f:ifigar [SalesOrderHeader]. [dx_territoryi_orderdate]

Cost: 93 %

FIGURE 4-51 Execution plan 2 with filtered index idx_territory5_orderdate

SQL Server automatically creates distribution statistics on the first index key column.
Naturally, when creating filtered indexes you also get filtered statistics. SQL Server also allows
you to create filtered statistics manually, as the following example shows:

CREATE STATISTICS stats_territory4_orderdate
ON Sales.SalesOrderHeader(OrderDate)
WHERE TerritoryID = 4;

You can also use filtered indexes to solve a common request related to enforcing data integrity.
The UNIQUE constraint supported by SQL Server treats two NULLs as equal for the purposes
of enforcing uniqueness. This means that if you define a UNIQUE constraint on a NULLable
column, you are allowed only one row with a NULL in that column. In some cases, though, you

242

Inside Microsoft SQL Server 2008: T-SQL Querying

might need to enforce the uniqueness only of nonNULL values but allow multiple NULLs. ANSI
SQL does support such a kind of UNIQUE constraint, but SQL Server never implemented it.
Now, with filtered indexes, it's quite easy to handle this need. Simply create a unique filtered
index based on a predicate in the form WHERE <column> IS NOT NULL. As an example, run the
following code to create a table called T1 with such a filtered index on the column colI:

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;
CREATE TABLE dbo.T1(coll INT NULL, col2 VARCHAR(10) NOT NULL);
GO
CREATE UNIQUE NONCLUSTERED INDEX 1idx_coll_notnull

ON dbo.T1(co1l)

WHERE co11l IS NOT NULL;

Run following code twice in an attempt to insert two rows with the same non-NULL co/I value:

INSERT INTO dbo.T1l(coll, col2)
VALUES(1, 'a');

The second run of this code will fail with the following error:

Msg 2601, Level 14, State 1, Line 1
Cannot insert duplicate key row in object 'dbo.T1l' with unique index '"idx_coll_notnull'.
The statement has been terminated.

Run the following code twice in an attempt to insert two rows with NULL co/I value:

INSERT INTO dbo.T1l(coll, col2)
VALUES(NULL, 'a');

And this time both rows are inserted.
When you're done experimenting with filtered indexes, run the following code for cleanup:

DROP INDEX Sales.SalesOrderHeader.idx_currate_notnull;

DROP INDEX Sales.SalesOrderHeader.idx_freight_5000_or_more;

DROP INDEX Sales.SalesOrderHeader.idx_territory5_orderdate;

DROP STATISTICS Sales.SalesOrderHeader.stats_territory4_orderdate;
DROP TABLE dbo.T1;

Indexed Views

This section briefly describes and demonstrates the concept of indexed views for the sake
of completeness. | won't conduct a lengthy discussion on the subject here. I'll provide a bit
more details in Inside T-SQL Programming.

SQL Server allows you to create indexes on views—not just on tables. Normally, a view is

a virtual object, and a query against it ultimately queries the underlying tables. However,
when you create a clustered index on a view, you materialize all of the view's contents within
the clustered index on disk. After creating a clustered index, you can also create multiple
nonclustered indexes on the view as well. The data in the indexes on the view will be kept in
sync with the changes in the underlying tables as with any other index.

Chapter 4 Query Tuning 243

Indexed views are beneficial mainly in reducing /O costs and expensive processing of data.
Such costs are especially apparent in aggregation queries that scan large volumes of data
and produce small result sets and in expensive join queries.

For example, the following code creates an indexed view that is designed to tune aggregate queries
that group orders by empid and YEAR(orderdate), returning the count of orders for each group:

USE Performance;

IF OBJECT_ID('dbo.EmpOrders', 'V') IS NOT NULL
DROP VIEW dbo.EmpOrders;

GO

CREATE VIEW dbo.EmpOrders
WITH SCHEMABINDING

AS

SELECT empid, YEAR(orderdate) AS orderyear, COUNT_BIG(*) AS numorders
FROM dbo.Orders

GROUP BY empid, YEAR(orderdate);

GO

CREATE UNIQUE CLUSTERED INDEX 1idx_ucl_eid_oy
ON dbo.EmpOrders(empid, orderyear);

Query the view, and you will get the execution plan shown in Figure 4-52, showing that the
clustered index on the view was scanned:

SELECT empid, orderyear, numorders
FROM dbo.EmpOrders;

1)
L L)
Clustered Index Scan (V..
[Emporders]. [ids_ucl_ei..
Cost: 100 ¥

Clustered Index Scan (YiewClustered)
Scanning a clustered index, entirely or only a range,
Physical Operation Clustered Index Scan
Logical Operation Clustered Index Scan
Actual Number of Rows 2444
Estimated IfO Cost 00083102
Estimated CPU Cost 0.0028454
Mumber of Executions 1
Estimated Number of Executions 1
Estimated Operator Cost 00111556 {100%)
Estimated Subtree Cost 00111556
Estimated Number of Rows 2444
Estimated Row Size 23B
Actual Rebinds 1]
Actual Rewinds 1]
Ordered False
Node ID 1
Object
[Performance][dbol[ErnpOrders][idx_ucl_eid_oy]
Qutput List
[Performance].[dba] [EmpOrders]empid, [Performance].
[dbol.[EmpOrderslorderyear, [Performance] [dba].
[ErnpOrders] numorders

FIGURE 4-52 Execution plan for query against indexed view

244

Inside Microsoft SQL Server 2008: T-SQL Querying

The view contains a very small number of rows (around a couple of thousand) compared
to the number of rows in the table (a million). The leaf of the index contains only about
10 pages. Hence, the 1/0 cost of the plan would be about 10 page reads.

Here are the performance measures | got for this query:

B |ogical reads 10

® CPUtime 0 ms

B FElapsed time 144 ms

B Estimated subtree cost 0.0111556

Interestingly, if you work with an Enterprise (or Developer) edition of SQL Server, the optimizer
will consider using indexes on the view even when querying the underlying tables directly. For
example, the following query produces a similar plan to the one shown in Figure 4-52, with
the same query cost:

SELECT empid, YEAR(orderdate) AS orderyear, COUNT_BIG(*) AS numorders
FROM dbo.Orders
GROUP BY empid, YEAR(orderdate);

If you're not working with an Enterprise edition, you have to query the view directly and also
specify that you do not want the optimizer to expand its optimization choices beyond the
scope of the view. You do so by specifying the NOEXPAND table hint: FROM <view_name>
WITH (NOEXPAND,).

Analysis of Indexing Strategies

Recall the earlier discussion about the tuning methodology. When you perform index tuning,
you do so with respect to the query patterns that incur the highest cumulative costs in the
system. For a given query pattern, you can build an index optimization scale that would

help you make the right design choices. | will demonstrate this process through an example.
To follow the demonstrations, before you continue, drop the view created earlier and all

the indexes on the Orders table except for the clustered index. Alternatively, you can rerun
the code in Listing 4-1 after commenting or removing all index and primary key creation
statements on Orders, keeping only the clustered index.

In our example, suppose that you need to tune the following query pattern:
SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders

WHERE orderid >= value;

Remember that the efficiency of some access methods depends on the selectivity of the
query, while the efficiency of others doesn't. For access methods that depend on selectivity,

Chapter 4 Query Tuning 245

assume that the query pattern is typically fairly selective (around 0.1 percent selectivity, or
around 1000 qualifying rows). Use the following query in your tuning process when aiming at
such selectivity:

SELECT orderid, custid, empid, shipperid, orderdate
FROM dbo.Orders
WHERE orderid >= 999001;

I'll progress in the index optimization scale from the worst-case scenario to the best, using
this query as a reference, but I'll also describe what would happen when the selectivity of the
query changes.

Table Scan (Unordered Clustered Index Scan)

The worst-case scenario for our query pattern with fairly high selectivity is when you have
no good index. You will get the execution plan shown in Figure 4-53, using a table scan
(unordered clustered index scan).

= - [y
Parallelism Clustered Index Scan (C1..
(Gather Streams) [Oorders]. [1dx_cl_od]
Cost: 1 % Cost: 99 %

FIGURE 4-53 Execution plan with table scan (unordered clustered index scan)

Even though you're after a fairly small number of rows (1,000 in our case), the whole table is
scanned. | got the following performance measures for this query:

B Logical reads 25175

® CPUtime 249 ms

B Elapsed time 8605

B Estimated subtree cost 19.3423

This plan is trivial and not dependent on selectivity—that is, you get the same plan regardless
of the selectivity of the query.

Unordered Covering Nonclustered Index Scan

The next step in the optimization scale would be to create a covering nonclustered index
where the filtered column (orderid) is not the first index column:

CREATE NONCLUSTERED INDEX idx_nc_od_i_oid_cid_eid_sid
ON dbo.Orders(orderdate)
INCLUDE (orderid, custid, empid, shipperid);

246 Inside Microsoft SQL Server 2008: T-SQL Querying

This index yields an access method that uses a full unordered scan of the leaf of the index, as
shown in Figure 4-54.

= cA ki
Parallelism Index Scan (MonClustered)
(Gather Streams) [orders]. [1dx_nc_od_i_oi.
Cost: & % Cost: 94 %

FIGURE 4-54 Execution plan with unordered covering nonclustered index scan

The row size in the covering index is about a fifth of the size of a full data row, and this will
be reflected in the query’s cost and run time. Here are the performance measures | got for
this query:

B |ogical reads 5142

® CPU time 140 ms

B Elapsed time 2543 ms

B Estimated subtree cost 4.58245

As with the previous plan, this plan is also trivial and not dependent on selectivity.

Note The run times you will get for your queries will vary based on what portion of the
data is cached. If you want to make credible performance comparisons in terms of run times,
make sure that the caching environment in both cases reflects what you would have in your
production environment. That is, if you expect most pages to reside in cache in your production
environment (warm cache), run each query twice and measure the run time of the second run.
If you expect most pages not to reside in cache (cold cache), in your tests clear the cache before
you run each query.

Before you proceed, drop the index that you just created:

DROP INDEX dbo.Orders.idx_nc_od_i_oid_cid_eid_sid;

Unordered Nonclustered Index Scan + Lookups

The next step in our index optimization scale is to create a smaller nonclustered index that
doesn't cover the query and that contains the filtered column (orderid), but not as the first
key column:

CREATE NONCLUSTERED INDEX 1idx_nc_od_i_oid
ON dbo.Orders(orderdate)
INCLUDE(orderid);

Chapter 4 Query Tuning 247

You get an unordered nonclustered index scan + lookups, as shown in Figure 4-55.

= s ffﬂ i
Farallelism Mested Loops Index Scan (NonClustered)
(Gather Streams) (Inner Join) [orders]. [idx_nc_od_i_oi
Cost: 1 % Cost: 5 ¥ Cost: 51 %

&0

Key Lookup ﬁ&]ustered)
[orders]. [1dx_cl_od]
Cost: 44 %

FIGURE 4-55 Execution plan with unordered nonclustered index scan + lookups

Note that the efficiency of this plan compared to the previous one depends on the selectivity
of the query. As the selectivity of the query gets lower (low selectivity means a high
percentage of rows), the more substantial the cost is of the lookups here. In our case, the

query is fairly selective, so this plan is more efficient than the previous two; however, with low
selectivity, this plan will be less efficient than the previous two.

Here are the performance measures that | got for this query:

B |ogical reads 6501

® CPU time 109 ms

B Elapsed time 1534 ms

B Estimated subtree cost 5.23753

Note that even though the number of logical reads and the query cost seem higher than

in the previous plan, you can see that the run times are lower. Remember that the lookup
operations here traverse the clustered index, and the nonleaf levels of the clustered index are
most likely to reside in cache.

Before you continue, drop the new index:

DROP INDEX dbo.Orders.idx_nc_od_i_oid;

Nonclustered Index Seek + Ordered Partial Scan + Lookups
You can get the next level of optimization in the scale by creating a nonclustered noncovering

index on orderid:

CREATE UNIQUE NONCLUSTERED INDEX 1idx_unc_oid
ON dbo.Orders(orderid);

This index yields a nonclustered index seek + ordered partial scan + lookups, as shown in
Figure 4-56.

248

Inside Microsoft SQL Server 2008: T-SQL Querying

| L] x!
Mested Loops Index Seek (MNonClustered)
{Inner Join) [Orders]. [idx_unc_oid]
Cost: 0% Cost: 0 %

Key Lookup (Clustered)

[orders]. [idx_cl_od]
Cost: 100 %

FIGURE 4-56 Execution plan with nonclustered index seek + ordered partial scan + lookups

Instead of performing the full index scan as the previous plan did, this plan performs a
seek to the first key in the sought range, followed by an ordered partial scan of only the
relevant range. Still, you get as many lookups as previously, which in our case amounts to a
big chunk of the query cost. As the range grows larger, the contribution of the lookups to
the query’s cost becomes more substantial, and the costs of these two plans grows closer
and closer.

Here are the performance measures for this query:

B |ogical reads 3976

® CPU time 0 ms

B Elapsed time 545 ms

B Estimated subtree cost 3.22853

Determining the Selectivity Point

Allow me to digress a bit to expand on a subject | started discussing earlier—plans

that are dependent on the selectivity of the query. The efficiency of the last plan is
dependent on selectivity because you get one whole lookup per sought row. At some
selectivity point, the optimizer would realize that a table scan is more efficient than
using this plan. You might find it surprising, but that selectivity point is a pretty small
percentage. Even if you have no clue about how to calculate this point, you can practice
a trial-and-error approach, where you apply a binary algorithm, shifting the selectivity
point to the left or right based on the plan that you get. You can invoke a range query,
where you start with 50 percent selectivity by invoking the following query:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE orderid >= 500001;

Examine the estimated execution plan (no need for actual here) and determine whether
to proceed in the next step to the left or to the right of this point, based on whether

Chapter 4 Query Tuning 249

you got a table scan (clustered index scan) or an index seek. With the median key, you
get the plan shown in Figure 4-57, showing a table scan.

N

. ki

Clustered Index Scan (C1 .
[Orders]. [idx_cl_od]
Cost: 100 %

FIGURE 4-57 Estimated plan showing a table scan

This tells you that 50 percent is not selective enough to justify using the nonclustered
index. So you go to the right, to the middle point between 50 percent and a 100 percent.
Following this logic, you would end up using the following keys: 750001, 875001, 937501,
968751, 984376, 992189, and 996095. The last key yields a plan where the nonclustered
index is used. So now you go to the left, to the point between the keys 992189 and
996095, which is 994142. You will find that the nonclustered index is still used, so you
keep on going left, to the point between the keys 992189 and 994142. You continue this
process, going left or right according to your findings, until you reach the first selectivity
point where the nonclustered index is used. You will find that this point is the key 993347,
producing the plan shown in Figure 4-58.

. @ %
Mested Loops Index Seek (MonClustered)
(Inner Join) [Orders]. [idx_unc_oid]
Cost: 0 % Coszt: 0 %

kKey Lookup (Clustered)
[orders]. [1dx_cl_od]
Cost: 100 %

FIGURE 4-58 Estimated plan showing the index is used

You can now calculate the selectivity, which is the number of qualifying rows (6,654)
divided by the number of rows in the table (1,000,000), which amounts to 0.6654 percent.

In our query pattern'’s case, with this selectivity or higher (lower percentage), the
optimizer uses the nonclustered index, while with a lower selectivity, it opts for a table
scan. As you can see, in our query pattern’s case, the selectivity point is even lower

than 1 percent. Some database professionals might find this number surprisingly small,
but if you make performance estimations like the ones we did earlier, you will find it
reasonable. Don't forget that page reads are the only factor that you should take into
consideration. You should also consider the access pattern (random/sequential) and other
factors as well. Remember that random 1/0 is much more expensive than sequential I/O.
Lookups use random I/O, while a table scan can potentially use sequential 1/0.

250

Inside Microsoft SQL Server 2008: T-SQL Querying

Before you proceed, drop the index used in the previous step:

DROP INDEX dbo.Orders.idx_unc_oid;

Clustered Index Seek + Ordered Partial Scan

You can get the next level of optimization by creating a clustered index on the orderid
column. Because a clustered index is already on the Orders table, drop it first and then create
the desired one:

DROP INDEX dbo.Orders.idx_cl_od;
CREATE UNIQUE CLUSTERED INDEX idx_cl_oid ON dbo.Orders(orderid);

You will get a trivial plan that uses a seek to the first key matching the filter, followed by an
ordered partial scan of the sought range, as shown in Figure 4-59.

A
IJ"J
‘| Clustered Index Seek ({C1..
[Orders]. [Tdx_cTl_oid]
Cost: 100 %

FIGURE 4-59 Execution plan with clustered index seek + ordered partial scan

The main benefit of this plan is that no lookups are involved. As the selectivity of the query
goes lower, this plan becomes more and more efficient compared to a plan that does apply
lookups. The 1/0 cost involved with this plan is the cost of the seek (3 in our case), plus the
number of pages that hold the data rows in the filtered range (25 in our case). For the most
part, the main cost of such a plan is typically the cost of the ordered partial scan, unless the
range is really tiny (for example, a point query). Remember that the performance of an index
order scan depends to a great extent on the fragmentation level of the index. Here are the
performance measures that | got for this query:

B |ogical reads 28

® CPUtime Oms

B FElapsed time 236 ms

B Estimated subtree cost 0.130601

Before proceeding to the next step, restore the original clustered index:

DROP INDEX dbo.Orders.idx_cl_oid;
CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

Chapter 4 Query Tuning 251

Covering Nonclustered Index Seek + Ordered Partial Scan

The optimal level in our scale is a nonclustered covering index defined with the orderid
column as the key and all the other columns as included nonkey columns:

CREATE UNIQUE NONCLUSTERED INDEX idx_unc_oid_i_od_cid_eid_sid
ON dbo.Orders(orderid)
INCLUDE (orderdate, custid, empid, shipperid);

The plan’s logic is similar to the previous one, except that here the ordered partial scan ends
up reading fewer pages. That, of course, is because more rows fit in a leaf page of this index
than data rows do in a clustered index page. You get the plan shown in Figure 4-60.

. 9
Index Seek (MonClustered)
[Orders]. [1dx_unc_oid_7_.
Cost: 100 %

FIGURE 4-60 Execution plan with covering nonclustered index seek + ordered partial scan
And here are the performance measures | got for this query:

B logical reads 9

® CPUtime Oms

B Elapsed time 230 ms

B Estimated subtree cost 0.0080857

Again, this is a trivial plan. And the performance of the ordered partial scan varies depending
on the fragmentation level of the index. As you can see, the cost of the query dropped from
19.621100 in the lowest level in the scale to 0.008086 and the elapsed time from more than
8 seconds to 230 milliseconds. Such a drop in run time is common when tuning indexes in an
environment with poor index design.

When done, drop the last index you created:

DROP INDEX dbo.Orders.idx_unc_oid_i_od_cid_eid_sid;

Summary of Analysis of Indexing Strategy

Remember that the efficiency of several plans in our index optimization scale was based

on the selectivity of the query. If the selectivity of a query you're tuning varies significantly
between invocations of the query, make sure that in your tuning process you take this

into account. For example, you can prepare tables and graphs with the performance
measurements versus selectivity and analyze such data before you make your index design
choices. Table 4-10 shows a summary of logical reads versus selectivity of the different levels
in the scale for the sample query pattern under discussion against the sample Orders table.

252

Inside Microsoft SQL Server 2008: T-SQL Querying

TABLE 4-10 Logical Reads vs. Selectivity for Each Access Method

Access
Method

Table Scan/
Unordered
Clustered
Index Scan

Unordered
Covering
Nonclustered
Index Scan

Unordered
Nonclustered
Index Scan +
Lookups

Nonclustered
Index Seek +
Ordered
Partial Scan +
Lookups

Clustered
Index Seek +
Ordered
Partial Scan

Covering
Nonclustered
Index Seek +
Ordered
Partial Scan

1

0.0001%
25,391

5158

2,857

1,000
0.1%
25,391

5,158

5963

3,078

28

10,000

1%
25,391

5,158

33,990

31,131

249

54

100,000
10%
25,383

5,158

312,009

312,613

2,447

512

200,000

20%
25,355

5158

618,250

621,680

4,890

1,021

500,000
50%
25,271

5,150

1,536,956

1,554,822

12,220

2,546

1,000,000 Rows

100% Selectivity
25,081

5,096

3,065,577

3,069,871

24,434

5,089

Note To apply a certain execution plan in a case where the optimizer would normally opt for
another plan that is more efficient, | had to use a table hint to force using the relevant index.

Of course, logical reads shouldn't be the only indication you rely on. Remember that
different /O patterns have different performance and that physical reads are much more
expensive than logical reads. But when you see a significant difference in logical reads
between two options, it is usually a good indication of which option is faster. Figure 4-61 has
a graphical depiction of the information from Table 4-10.

You can observe many interesting things when analyzing the graph. For example, you
can clearly see which plans are based on selectivity and which aren’t. You can also see the
selectivity point at which one plan becomes better than another.

Chapter 4 Query Tuning

50,000

45,000

40,000

35,000
[}
8 30000 -
@
= e e
® 25,000 v g
2
8 20,000 ¢

15,000 -3

10,000 ¥,

5,000 L —
0 L T 4 ;
0.0001% 0.1% 1% 10% 20% 50% 100%
selectivity
—#—Table Scan/Unordered Clustered Index Scan ——Unordered Covering Monclustered Index Scan
Unordered Monclustered Index Scan + Lookups Monclustered Index Seek + Ordered Partial Scan + Lookupsg

—+—ClusteredIndex Seek + Ordered Partial Scan —8—Covering NonclusteredIndex Seek + Ordered Partial Scan

FIGURE 4-61 Graph of logical reads versus selectivity

Similarly, Table 4-11 shows summary performance statistics of the query cost versus

selectivity.

Figure 4-62 shows a graph based on the data in Table 4-11.

40

36

32

24

20 £ &

subtree cost

12 y

0 & . & . @&

0.0001% 01% 1%

: & " & ; .
10% 20% 50% 100%
selectivity

——Table Scan/Unordered Clustered Index Scan
Unordered Nonclustered Index Scan + Lookups
—+—Clustered Index Seek + Ordered Partial Scan

—8—Unordered Covering Nonclustered Index Scan
Monclustered Index Seek + QOrdered Partial Scan + Lookups
—&—Covering Nonclustered Index Seek + Ordered Partial Scan

FIGURE 4-62 Graph of subtree cost versus selectivity

253

Inside Microsoft SQL Server 2008: T-SQL Querying

254

8CE98Y

669T°6T

9599'68¢

960vvC

c0v98'Yy

8179°6T
STTVERETEIS %00T

SMOY 000°000°T

£580800°0

TO90€T0

€9L°¢81

SC8091

Sve8sv

ecreel
%09

000°'00S

£980800°0

TO90€T0

TLE6TT

T90°€TT

S¥Z8sv

e€cveel
%0¢

000002

£S80800°0

TO90€T 0

T¢T'L6

LV9€96

SYe8sy

€cveel
%01

000°00T

£S80800°0

TO90€T0

9CIv'Le

L9Y0°CE

S8y

ecreel
%1

0000T

£S80800°0

TO90€T 0

€982t

€SLECS

SYe8sy

€cveel
%10

000'T

£S80800°0

TO90€T0

¥0£5900°0

T0T69°€

SYZ8sy

1344 A8
%1000°0

ueds |eijed
paJ4apIO

+ 3935 Xapu|
paJa1snPuUoN
Buliano)

ueds |eiped
paJapiO

+ 3995 Xapu|
paJaisnd

sdnyoo1
+ Ueds |elled
patapi0
+ 995 Xapu|
paJaisnjpuoN

sdnyo01

+ UedS Xapu|
paJa1sn|puoN
paJaploun

ueds xapu|
paJa1sn|puoN
Bulianod
paJaploun
ueds xapu|
paJaisnd
paJaploun
/ueds a|qey

[JIBETY
SS90y

POoYlaIAl SS90V Yoe3 10y AHAIII|IS “SA S)}SOD) 9343qNS pajewysy II-v 319vl

Chapter 4 Query Tuning 255

You can observe a striking resemblance between the two graphs. When you think about it,
this makes sense because most of the cost involved with our query pattern is because of I/0O.
Naturally, in plans where a more substantial portion of the cost is related to CPU, you will get
different results.

Of course, you also want to generate similar statistics and graphs for the actual run times of the
queries in your benchmarks. At the end of the day, run time is what the user cares about.

I also find it valuable to visualize performance information in another graphical way, as
shown in Figure 4-63.

-slow---

Low
Selectivity
100%

High
Selectivity
0%

--fast---

FIGURE 4-63 Index optimization scale

You might find it easier with this illustration to identify plans that are based on selectivity
versus plans that aren’t (represented as a dot) and also to make comparisons between the
performance of the different levels of optimization in the scale.

256

Inside Microsoft SQL Server 2008: T-SQL Querying

Note For simplicity’s sake, all statistics and graphs shown in this section were collected against
the Performance database | used in this chapter, where the level of fragmentation of indexes
was minimal. When you conduct benchmarks and performance tests, make sure you introduce
the appropriate levels of fragmentation in the indexes in your test system so that they reflect the
fragmentation levels of the indexes in your production system adequately. The performance of
index order scans might vary significantly based on the level of fragmentation of your indexes.
Remember that the storage engine uses index order scans to carry out requests from the
relational engine to process full ordered index scans, partial ordered index scans, and in some
cases also unordered index scans. (See the section “"The Storage Engine’s Treatment of Scans”
earlier in the chapter for details.) Similarly, you also need to examine the average page densities
in your production system and introduce similar page densities in the test system.

Besides having the ability to design good indexes, it is also important to be able to identify
which indexes are used more heavily and which are rarely or never used. You don't want to
keep indexes that are rarely used because they do have negative performance effects on
modifications.

SQL Server collects index usage information in the background and enables you to query
this information through dynamic management objects. You get a DMF called dm_db_index_
operational_stats and a DMV called dm_db_index_usage_stats. The dm_db_index_operational_
stats DMF gives you low-level /O, locking, latching, and access method activity information.
You provide the function with database ID, object ID, index ID (or O for a heap), and partition
ID. You can also request information about multiple entities by specifying a NULL in the
relevant argument. For example, to get information about all objects, indexes, and partitions
in the Performance database, you would invoke the function as follows:

SELECT *
FROM sys.dm_db_index_operational_stats(
DB_ID('Performance'), null, null, null);

The dm_db_index_usage_stats DMV gives you usage counts of the different index operations:

SELECT *
FROM sys.dm_db_index_usage_stats;

These dynamic management objects make the analysis of index usage simple and accurate.

Fragmentation

| referred to index fragmentation on multiple occasions in this chapter. When | mentioned
fragmentation, | referred to a type known as logical scan fragmentation or average
fragmentation in percent or external fragmentation. As | mentioned earlier, this type reflects the
percentage of out-of-order pages in the index in terms of their file order versus their logical
order in the linked list. Remember that this fragmentation can have a substantial impact on
ordered scan operations in indexes. It has no effect on operations that do not rely on the
index’s linked list—for example, seek operations, lookups, allocation order scans, and so on.

Chapter 4 Query Tuning 257

You want to minimize the fragmentation level of indexes for queries with a substantial portion
of their cost involved with ordered scans. You do so by rebuilding or reorganizing indexes.

Another type of fragmentation that you typically care about is what | referred to as average
page density. Some database professionals refer to this type of fragmentation as internal
fragmentation, but to avoid confusion | consciously didn't use this term earlier. Although
logical scan fragmentation is never a good thing, average page density has two facets. A
low percentage (low level of page population) has a negative impact on queries that read
data because they end up reading more pages than they could potentially if the pages
were better populated. The positive impact of having some free space in index pages is that
insertions of rows to such pages would not cause page splits, which are very expensive. As
you can guess, free space in index pages is bad in systems that involve mostly reads (for
example, data warehouses) and good for systems that involve many inserts (for example,
OLTP systems). You might even want to introduce some free space in index pages by
specifying a fillfactor value when you rebuild your indexes.

To determine whether you need to rebuild or reorganize your indexes, you need information
about both types of fragmentation. You can get this information by querying the DMF
dm_db_index_physical_stats. For example, the following query will return fragmentation
information about the indexes in the Performance database:

SELECT *
FROM sys.dm_db_index_physical_stats(
DB_ID('Performance'), NULL, NULL, NULL, 'SAMPLED');

The fragmentation types | mentioned show up in the attributes avg_fragmentation_in_
percent and avg_page_space_used_in_percent, and as you can see, the attribute names are
self-explanatory.

As | mentioned earlier, to treat both types of fragmentation you need to rebuild or
reorganize the index. Rebuilding an index has the optimal defragmentation effect. The
operation makes its best attempt to rebuild the index such that the file order of the pages is
as close as possible to their order in the linked list and to make the pages as contiguous as
possible. Also, remember that you can specify a fillfactor to introduce some free space in the
index leaf pages. Note that if your computer has multiple CPUs and SQL Server uses parallel
index rebuilds (Enterprise edition only), the operation will finish faster than with a single
thread but is likely to result in more logical fragmentation. You can restrict the operation

to a single CPU with the MAXDOP hint—this way, at the cost of a longer index rebuild, you
will likely get less fragmentation. Also, SQL Server needs space for sorting in the filegroup
where the index resides. If the filegroup files have only a little free space, some logical
fragmentation in the index at the end of the operation is likely. To minimize fragmentation,
ensure that you have sufficient free space in the files or use the option SORT_IN_TEMPDB to
request that the index rebuild use space from the tempdb database for sorting.

By default, index rebuilds are offline operations. Rebuilding a clustered index acquires an
exclusive lock for the whole duration of the operation, meaning that other processes can

258 Inside Microsoft SQL Server 2008: T-SQL Querying

neither read nor write to the table. Rebuilding a nonclustered index acquires a shared lock,
meaning that writes are blocked against the table, and obviously, the index cannot be used
during the operation. SQL Server Enterprise supports online index operations by request (you
need to specify ON in the option ONLINE) that allow you to create, rebuild, and drop indexes
online. In addition, these operations allow users to interact with the data while the operation
is in progress. Online index operations use row-versioning technology. When an index is
rebuilt online, SQL Server actually maintains two indexes behind the scenes, and when the
operation is done, the new one overrides the old one.

For example, the following code rebuilds the idx_cl_od index on the Orders table online:

ALTER INDEX idx_cl_od ON dbo.Orders REBUILD WITH (ONLINE = ON);

Note that online index operations need sufficient space in the database and overall are
slower than offline operations. If you can spare a maintenance window for the activity to
work offline, you had better do so. Even when you do perform the operations online, they
have a performance impact on the system while they are running, so it’s best to run them
during off-peak hours.

Instead of rebuilding an index, you can also reorganize it. Reorganizing an index involves

a bubble sort algorithm to sort the index pages in the file according to their order in the
index’s linked list. The operation does not attempt to make the pages more contiguous
(reduce gaps). As you can guess, the defragmentation level that you get from this operation
is not as optimal as fully rebuilding an index. Also, this operation performs more logging
than an index rebuild overall and therefore is typically slower.

So why use this type of defragmentation? First, in non-Enterprise editions of SQL Server

it is the only online defragmentation utility. The operation grabs short-term locks on a

pair of pages at a time to determine whether they are in the correct order, and if they are
not, it swaps them. Second, an index rebuild must run as a single transaction, and if it's
aborted while in process, the whole activity is rolled back. This is unlike an index reorganize
operation, which can be interrupted as it operates on a pair of pages at a time. When you
later run the reorganize activity again, it will pick up where it left off earlier.

Here's how you reorganize the idx_cl_od index:

ALTER INDEX idx_cl_od ON dbo.Orders REORGANIZE;

Partitioning

SQL Server supports native partitioning of tables and indexes. Partitioning your objects means
that they are internally split into multiple physical units that together make the object (table or
index). Partitioning is virtually unavoidable in medium to large environments. By partitioning your
objects, you improve the manageability and maintainability of your system, and you improve

the performance of activities such as purging historic data, data loads, and others. Partitioning

Chapter 4 Query Tuning 259

in SQL Server is native—that is, you have built-in tools to partition the tables and indexes,
while, logically, to the applications and users they appear as whole units. You need to know
some important details about querying and query tuning when your tables and indexes are
partitioned. Chapter 11, "Querying Partitioned Tables,” covers the subject in detail.

Preparing Sample Data

When conducting performance tests, it is vital that the sample data you use be well prepared
so that it reflects the production system as closely as possible, especially with respect to the
factors you are trying to tune. Typically, it's not realistic to just copy all the data from the
production tables, at least not with the big ones. However, you should make your best effort
to have an adequate representation that reflects similar data distribution, density of keys,
cardinality, and so on. You also want your queries against the test system to have similar
selectivity to the queries against the production system. Performance tests can be skewed
when the sample data does not adequately represent the production data.

In this section, I'll provide an example of skewed performance testing results resulting from
inadequate sample data. I'll also discuss the TABLESAMPLE option.

Data Preparation

When | prepared the sample data for this chapter’s demonstrations, | didn’t need to reflect
a specific production system, so preparing sample data was fairly simple. | needed it mainly
for the “Tuning Methodology” and “Index Tuning” sections. | could express most of my
points through simple random distribution of the different attributes that were relevant

to our discussions. But our main data table, Orders, does not accurately reflect an average
production Orders table. For example, | produced a fairly even distribution of values in the
different attributes, while typically in production systems, different attributes have different
types of distribution (some uniform, some standard). Some customers place many orders,
and others place few. Some customers are also more active during certain periods of time
and less active during others. Depending on your tuning needs, you might or might not need
to reflect such things in your sample data, but you definitely need to consider them and
decide whether they do matter.

When you need large tables with sample data, the easiest thing to do is to generate some
small table and duplicate its content (save the key columns) many times. This can be fine if,
for example, you want to test the performance of a user-defined function invoked against
every row or a cursor manipulation iterating through many rows. But such sample data

in some cases can yield completely different performance than what you would get with
sample data that more adequately reflects your production data. To demonstrate this, I'll
walk you through an example that | cover in much more depth in Inside T-SQL Programming.
| often give this exercise in class and ask students to prepare a large amount of sample data
without giving any hints.

260 Inside Microsoft SQL Server 2008: T-SQL Querying

The exercise has to do with a table called Sessions, which you create and populate by running
the following code:

SET NOCOUNT ON;
USE Performance;

IF OBJECT_ID('dbo.Sessions', 'U') IS NOT NULL DROP TABLE dbo.Sessions;

CREATE TABLE dbo.Sessions

(
keycol INT NOT NULL IDENTITY,
app VARCHAR(10) NOT NULL,
usr VARCHAR(10) NOT NULL,
host VARCHAR(10) NOT NULL,

starttime DATETIME NOT NULL,

endtime DATETIME NOT NULL,

CONSTRAINT PK_Sessions PRIMARY KEY(keycol),
CHECK(endtime > starttime)

INSERT INTO dbo.Sessions VALUES
('appl', 'userl', 'hostl', '20090212 08:30', '20090212 10:30'),
("appl', 'user2', 'hostl', '20090212 08:30', '20090212 08:45"),
('appl', 'user3', 'host2', '20090212 09:00', '20090212 09:30'),
('appl', 'user4', 'host2', '20090212 09:15', '20090212 10:30'),
("appl', 'user5', 'host3', '20090212 09:15', '20090212 09:30"),
('appl', 'user6', 'host3', '20090212 10:30', '20090212 14:30"),
('appl', 'user7', 'host4', '20090212 10:45', '20090212 11:30'),
('appl', 'user8', 'host4', '20090212 11:00', '20090212 12:30"),
('app2', 'user8', 'hostl', '20090212 08:30', '20090212 08:45'),
('app2', 'user7', 'hostl', '20090212 09:00', '20090212 09:30'),
('app2', 'user6', 'host2', '20090212 11:45', '20090212 12:00"),
("app2', 'user5', 'host2', '20090212 12:30', '20090212 14:00"),
('app2', 'user4', 'host3', '20090212 12:45', '20090212 13:30'),
('app2', 'user3', 'host3', '20090212 13:00', '20090212 14:00"),
("app2', 'user2', 'host4', '20090212 14:00', '20090212 16:30"),
('app2', 'userl', 'host4', '20090212 15:30', '20090212 17:00');

CREATE INDEX idx_nc_app_st_et ON dbo.Sessions(app, starttime, endtime);

The Sessions table contains information about user sessions against different applications. The
request is to calculate the maximum number of concurrent sessions per application—that is, the
maximum number of sessions that were active at any point in time against each application.

The following query, followed by its output, produces the requested information:

SELECT app, MAX(concurrent) AS mx
FROM (SELECT app,
(SELECT COUNT(*)
FROM dbo.Sessions AS S
WHERE T.app = S.app
AND T.ts >= S.starttime
AND T.ts < S.endtime) AS concurrent
FROM (SELECT app, starttime AS ts FROM dbo.Sessions) AS T) AS C
GROUP BY app;

Chapter 4 Query Tuning 261

app mx
appl 4
app2 3

The derived table T contains the application name (app) and session start time (starttime as
ts) pairs. For each row of T, a subquery counts the number of sessions that were active for the
application T.app at time T.ts. The outer query then groups the data by app and returns the
maximum count for each group. SQL Server's optimizer generates the execution plan shown
in Figure 4-64 for this query.

p: Tl o
‘| T — =
Stream Aggregate . Nested Loops Index Scan (NonClustered)
[Aggregate) (Inner Join) [Sessions]. [id=_nc_app_s..
Cost: O % Cost: 1 % Cozt: 39 %
e EX
= Iz 5y
" Stream Aggregate Clustered Index Scan (CI .
Coﬁﬁiii if%]ar (Agaregate) [Sessions]. [FK_Sessions] .
: ’ Cost: 4 % Cost: 56 %

FIGURE 4-64 Execution plan for query against the Sessions table

The script that creates the Sessions table also creates the covering index idx_nc_app_st_et
based on the key list (app, starttime, endtime), which is the optimal index for this query. In the
plan, this index is fully scanned (Index Scan operator) to return all rows. As rows are streamed
out from the Index Scan operator, a Nested Loops operator invokes a series of activities
(Clustered Index Scan, followed by Stream Aggregate) to calculate the count of active sessions
for each row. Because the Sessions table is so tiny (only one page of data), the optimizer
simply decides to scan the whole table (unordered clustered index scan) to calculate each
count. With a larger data set, instead of scanning the table, the plan would perform a seek
and ordered partial scan of the covering index to obtain each count. Finally, another Stream
Aggregate operator groups the data by app to calculate the maximum count for each group.

Now that you're familiar with the problem, suppose you were asked to prepare sample data
with 1,000,000 rows in the source table (call it BigSessions) such that it would represent a
realistic environment. Ideally, you should be thinking about realistic distribution of session
start times, session duration, and so on. However, people often take the most obvious
approach, which is to duplicate the data from the small source table many times; in our case,
such an approach would drastically skew the performance compared to a more realistic
representation of production environments.

Now run the following code to generate the BigSessions table by duplicating the data from
the Sessions table many times. You will get 1,000,000 rows in the BigSessions table:

IF OBJECT_ID('dbo.BigSessions', 'U') IS NOT NULL DROP TABLE dbo.BigSessions;

SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS keycol,
app, usr, host, starttime, endtime

INTO dbo.BigSessions

FROM dbo.Sessions AS S
CROSS JOIN Nums

WHERE n <= 62500;

262

Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE UNIQUE CLUSTERED INDEX 1idx_ucl_keycol
ON dbo.BigSessions(keycol);

CREATE INDEX idx_nc_app_st_et
ON dbo.BigSessions(app, starttime, endtime);

Run the following query against BigSessions:

SELECT app, MAX(concurrent) AS mx
FROM (SELECT app,
(SELECT COUNT(*)
FROM dbo.BigSessions AS S
WHERE T.app = S.app
AND T.ts >= S.starttime
AND T.ts < S.endtime) AS concurrent

FROM (SELECT app, starttime AS ts FROM dbo.BigSessions) AS T) AS C

GROUP BY app;

Note that this is the same query as before (but against a different table). The query will finish
in a few seconds, and you will get the execution plan shown in Figure 4-65.

g I i)

Stream Aggregate Mested Loops
{Aggregate) {Inner Join)
Cost: 1 % Cost: 4 %
= |-
= s 4L
Table Spool ComputehécaWar Stream Aggregate
(Lazy Spoall Cost: 0 % [Aggregate)
Cost: 8BS % : Cost: 1 %
Table Spool
Stores the data from the input into a termparary table in
order to optirize rewinds,
Physical Operation Table Spoal
Logical Operation Lazy Spoal
Actual Number of Rows 100000n
Estimated IO Cost 0.01
Estimated CPU Cost 0.0001003
MNumber of Executions 1000000
Estim ated Number of Executions 1000000
Estimated Operator Cost 100,32019 (8a%:)
Estimated Subtree Cost 104,543
Estimated Number of Rows 1
Estimated Row Size 118
Actual Rebinds 14
Actual Rewinds 009986
Node ID 4
Output List
Expri003

|

v T¥]
[=E51

Index Scan (MonClustered)
[BigSessions].[idx_nc_ap..
Cost: 4 %

Index Seek (MNonClustered)
LEigSessions |. Lidx_nc_ap..
Cost: 2 %

Index Seek (MonClustered)
Scan a particular range of rows from a
nonclustered index
Physical Operation Index Seek
Logical Operation Index Seek
Actual Number of Rows 1625000
Estimated IfO Cost 0.524606
Estim ated CPU Cost 0.165157
Number of Executions 14
Estim ated Mumber of Executions 14
Estim ated Operator Cost 28368 (2%
Estimated Subtree Cost 28368
Estimated Number of Rows 45000
Estim ated Row Size 15k
Actual Rebinds]
Actual Rewinds]
Ordered True
Node ID 7
Predicate
[Performance].[dba].[BigSessions] [starttime] <
[Performance].[dba].[BigSessions] [endtime] as [5].
[endtime]
Object
[Performance].[dba].[BigSessions],
[icke_ne_app_st_et] [5]

FIGURE 4-65 Execution plan for query against the BigSessions table with inadequate sample data

Chapter 4 Query Tuning 263

Here are the performance measures | got for this query:

B |ogical reads 212102

B CPU time 3463 ms

B FElapsed time 4064 ms

B Estimated subtree cost 113.904

At first glance it might seem like the lower branch of the plan is executed once for each of the
rows returned from the Index Scan operator. The Index Scan operator returns 1,000,000 rows.
The lower branch of the plan seems to do quite significant work per outer row—scanning

all rows with the same app value as in the outer row and starttime smaller than or equal to
the one in the outer row. Given such a plan and such a large number of rows involved, it is
quite inconceivable that the query would finish in a matter of only four seconds. The fact that
there’s a performance skew here because of bad sample data is elusive. The derived table

T has only 14 distinct rows (with app, ts values). Observe in Figure 4-65 that the Number of
Executions property of the Index Seek operator is 14. The optimizer is smart enough to realize
that it can reuse the information obtained for one row for all other rows with the same app
and ts values. Therefore, it invoked the Index Scan operator that scans the relevant range of
rows and the Stream Aggregate operator that counts them only 14 times!

Observe the Table Spool operator as well, which represents a temporary table holding the
session count for each distinct combination of app and starttime values. Notice the number
of rebinds (14) and the number of rewinds (999,986). Remember that a rebind means

that one or more correlated parameters of the join operator changed and that the inner

side must be reevaluated. That happens 14 times, once for each distinct pair of app and
starttime—meaning that the actual count activity preceding the operator took place only

14 times. A rewind means that none of the correlated parameters changed and that the prior
inner result set can be reused; this happened 999,986 times (1,000,000 — 14 = 999,986).

That's why the query finished in only a few seconds. A production environment might have
only a few applications, but so few distinct start times would be unlikely. Naturally, with more
realistic data distribution for our scenario, the count activity will take place many more times
than 14, and you will get a much slower query. It was a mistake to prepare the sample data
by simply copying the rows from the small Sessions table many times. The distribution of
values in the different columns should represent production environments more realistically.

Run the following code to populate BigSessions with more adequate sample data:

IF OBJECT_ID('dbo.BigSessions', 'U') IS NOT NULL DROP TABLE dbo.BigSessions;

SELECT
ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS keycol,
D.*,
DATEADD (
second,

264

Inside Microsoft SQL Server 2008: T-SQL Querying

1 + ABS(CHECKSUM(NEWID())) % (20%60),
starttime) AS endtime
INTO dbo.BigSessions
FROM
(
SELECT
'app' + CAST(1 + ABS(CHECKSUM(NEWID())) % 10 AS VARCHAR(10)) AS app,
'userl' AS usr,
'hostl' AS host,
DATEADD (
second,
1 + ABS(CHECKSUM(NEWID())) % (30%24*60*60),
'20090101') AS starttime
FROM dbo.Nums
WHERE n <= 1000000
) AS D;

CREATE UNIQUE CLUSTERED INDEX idx_ucl_keycol
ON dbo.BigSessions(keycol);

CREATE INDEX idx_nc_app_st_et
ON dbo.BigSessions(app, starttime, endtime);

| populated the table with sessions that start at random times over a period of one month
and last up to 20 minutes. | also distributed 10 different application names randomly. Now
request an estimated execution plan for the original query, and you will get the plan shown
in Figure 4-66.

= $iE tc] i

[EEFY
Stream Aggregates Mested Loops Index Scan (MonClustered)
(Aggregatel {Inner Joind [BigSes=ions]. [dx_nc_ap..
Cost: 0% Cost: 0% Cost: 0%
5 I
B ! i i)
Index Spoal Compute:%ca1ar Stream Aggregate Index Segk (Non;]ustered)
(Lazy Spooll Cost: O % CAagaregate) LBigSeszions . Lidx_nc_ap..
Cost: 1% ' " Cost: 37 % Cost: 63 %
Index Spool Index Seek (MonClustered)
Reformmats the data from the input into a termporary Sran a particular range of rows from a nonclustered
index, which is then used for seeking with the supplied indes,
seek predicate, Physical Operation Index Seek
Logical Operation Index Seek
Physical Operation Index Spool Estimated /O Cost 0.107568
Logical Operation Lazy Spoal Estimated CPU Cost 0032157
Estimated IfO Cost 0.003125 Estim ated Number of Executions 980753
Estimated CPU Cost 00002591 Estimated Operator Cost 330254 {(H324)
Estimated Number of Fxecutions 1000000.0196258 Estimated Subtree Cost 33045.4
Estimated Operator Cost 173.2 (1%) Estimated Number of Rows 3000
Estimated Subtree Cost 52718 Estimated Row Size 158
Estimated Number of Rows 1 Ordered True
Estimated Row Size 118 Node ID !
Mode ID 4 Predicate
[Petfarmance].[dbo].[BigSessions] [startime] £
Output List [Petrfarmance].[dbo].[BigSessions] [endtime] as 5],
Exprl005 [endtime]
Seek Predicate Object
Seek Keys[1]: Prefiz: [Performance] [dbn]. [Perfarmance].[dbo].[BigSessions] [idx_nc_app_st_et]
[BigSessions].app, [Performance].[dba]. [5]
[BigSessions].starttirne = Scalar Operator[Performance]. Seek Predicates
[dbol.[BigSessions].[appl), Scalar Operatar Seek Kews[1]: Prefia [Performance].[dbal,
([Perforrmance].[dbol [BigSessions] [startirme]) [Bigsessionsl.app = Scalar Operstor[Performance],
LT T SO T TSN T raia

FIGURE 4-66 Estimated execution plan for query against the BigSessions table with adequate sample data

Chapter 4 Query Tuning 265

The cost of the query is now 52,727. Trust me: You don't want to run it to see how long it
really takes. Or, if you like, you can start running it and come back the next day hoping that it
finished.

Now that the sample data is more realistic, you can see that the set-based solution presented
in this section is slow—unlike what you might be led to believe when using inadequate
sample data. In short, you can see how vital it is to put some thought into preparing good
sample data. Of course, the tuning process only starts now; you might want to consider
query revisions, cursor-based solutions, revisiting the model, and so on. But here | wanted

to focus the discussion on bad sample data. I'll conduct a more thorough tuning discussion
related to the problem at hand in Inside T-SQL Programming.

TABLESAMPLE

SQL Server supports a feature that allows you to sample data from an existing table. The tool
is a clause called TABLESAMPLE that you specify after the table name in the FROM clause
along with some options. Here's an example for using TABLESAMPLE to request 1,000 rows
from the Orders table in the Performance database:

SELECT *
FROM dbo.Orders TABLESAMPLE (1000 ROWS);

Note that if you run this query you probably won't get exactly 1,000 rows. I'll explain why
shortly.

You can specify TABLESAMPLE on a table-by-table basis. Following the TABLESAMPLE
keyword, you can optionally specify the sampling method to use. Currently, SQL Server
supports only the SYSTEM method, which is also the default if no method is specified. In
the future, we might see additional algorithms. Per ANSI, the SYSTEM keyword represents
an implementation-dependent sampling method. This means you will find different
algorithms implemented in different products when using the SYSTEM method. In SQL
Server, the SYSTEM method implements the same sampling algorithm used to sample
pages to generate distribution statistics.

You can use either the ROWS or the PERCENT keyword to specify how many rows you
would like to get back. Based on your inputs, SQL Server calculates random values to
figure out whether a page should be returned. Note that the decision of whether to read

a portion of data is done at the page level. This fact, along with the fashion in which SQL
Server determines whether to pick a page based on a random factor, means that you won't
necessarily get the exact number of rows that you asked for; rather, you'll get a fairly close
value. The more rows you request, the more likely you are to get a result set size close to
what you requested.

266

Inside Microsoft SQL Server 2008: T-SQL Querying

Here's an example for using the TABLESAMPLE clause in a query against the Orders table,
requesting 1,000 rows:

SELECT *
FROM dbo.Orders TABLESAMPLE SYSTEM (1000 ROWS);

| ran this query three times and got a different number of rows every time: 880, 1200, and
920.

An important benefit you get with the SYSTEM sampling method is that only the chosen
pages (those that SQL Server picked) are scanned. So even if you query a huge table, you
will get the results pretty fast—as long as you specify a fairly small number of rows. As |
mentioned earlier, you can also specify a percentage of rows. Here's an example requesting
0.1 percent, which is equivalent to 1,000 rows in our table:

SELECT *
FROM dbo.Orders TABLESAMPLE (0.1 PERCENT);

When you use the ROWS option, SQL Server internally first converts the specified number
of rows to a percentage. Remember that you are not guaranteed to get the exact number
of rows that you requested; rather, you'll get a close value determined by the number of
pages that were picked and the number of rows on those pages (which may vary).

To make it more likely that you'll get the exact number of rows you are after, specify a higher
number of rows in the TABLESAMPLE clause and use the TOP option to limit the upper bound
that you will get, like so:

SELECT TOP (1000) *
FROM dbo.Orders TABLESAMPLE (2000 ROWS);

There’s still a chance that you will get fewer rows than the number you requested, but you're
guaranteed not to get more. By specifying a higher value in the TABLESAMPLE clause, you
increase the likelihood of getting the number of rows you are after.

If you need to get repeatable results, use a clause called REPEATABLE, which was designed
for this purpose, providing it with the same seed in all invocations. For example, running the
following query multiple times yields the same result, provided that the data in the table has
not changed:

SELECT *
FROM dbo.Orders TABLESAMPLE (1000 ROWS) REPEATABLE(42);

Note that with small tables you might not get any rows at all. For example, run the following
query multiple times, requesting a single row from the Production.ProductCostHistory table
in the AdventureWorks2008 database:

SELECT *
FROM AdventureWorks2008.Production.ProductCostHistory TABLESAMPLE (1 ROWS);

Chapter 4 Query Tuning 267

You only occasionally get any rows back. | witnessed a very interesting discussion in a
technical SQL Server forum. Someone presented such a query and wanted to know why
he didn't get any rows back. Steve Kass, a friend and coauthor of mine and the ingenious
technical editor of these books, provided the following illuminating answer and kindly
allowed me to quote him here:

"As documented in Books Online (“Limiting Results Sets by Using TABLESAMPLE"),
the sampling algorithm can only return full data pages. Each page is selected or
skipped with probability [desired number of rows]/[rows in table].

The Production.ProductCostHistory table fits on 3 data pages. Two of those pages
contain 179 rows, and one contains 37 rows. When you sample for 10 rows (1/40
of the table), each of the 3 pages is returned with probability 1/40 and skipped
with probability 39/40. The chance that no rows are returned is about (39/40)"3,
or about 93%. When rows are returned, about 2/3 of the time you will see 179
rows, and about 1/3 of the time you will see 37 rows. Very rarely, you will see
more rows, if two or more pages are returned, but this is very unlikely.

As BOL suggests, SYSTEM sampling (which is the only choice) is not recommended
for small tables. | would add that if the table fits on N data pages, you should not
try to sample fewer than 1/N-th of the rows, or that you should never try to sample
fewer rows than fit on at least 2 or 3 data pages.

If you were to sample roughly two data pages worth of rows, say 263 rows, the
chance of seeing no rows would be about 3.7%. The larger (more data pages) the
table, the smaller the chance of seeing no rows when at least a couple of pages
worth are requested. For example, if you request 300 rows from a 1,000,000-row
table that fits on 10,000 data pages, only in 5% of trials would you see no rows,
even though the request is for far less than 1% of the rows.

By choosing the REPEATABLE option, you will get the same sample each time. For
most seeds, this will be an empty sample in your case. With other seeds, it will
contain 37, 179, 216, 358, or 395 rows, depending on which pages were selected,
with the larger numbers of rows returned for very few choices of seed.

That said, | agree that the consequences of returning only full data pages results in
very confusing behavior!”

With small tables, you might want to consider other sampling methods. You don't care too

much about scanning the whole table because you consider these techniques against small
tables anyway. For example, the following query will scan the whole table, but it guarantees
that you get a single random row:

SELECT TOP(1) *
FROM AdventureWorks2008.Production.ProductCostHistory
ORDER BY CHECKSUM(NEWID());

268 Inside Microsoft SQL Server 2008: T-SQL Querying

Note that other database platforms, such as DB2, implement additional algorithms—for
example, the Bernoulli sampling algorithm. You can implement it in SQL Server by using the
following query, provided by Steve Kass:

SELECT *
FROM AdventureWorks2008.Production.ProductCostHistory
WHERE ABS((ProductID%ProductID)+CHECKSUM(NEWID()))/POWER(2.,31) < 0.01

The constant 0.01 is the desired probability (in this case, 1 percent) of choosing a row. The
expression Product!D%Product/D was included to make the WHERE clause correlated and
force its evaluation on each row of ProductCostHistory. Without it, the value of the WHERE
condition would be calculated just once, and either the entire table would be returned or no
rows would be returned. Note that this technique requires a full table scan and can take a
while with large tables. You can test it against our Orders table and see for yourself.

An Examination of Set-Based vs. Iterative/Procedural
Approaches and a Tuning Exercise

Thus far in the chapter, | focused mainly on index tuning for given queries. However, in large
part, query tuning involves query revisions. That is, with different queries or different T-SQL
code you can sometimes get substantially different plans, with widely varying costs and run
times. In a perfect world, the ideal optimizer would always figure out exactly what you are
trying to achieve, and for any form of query or T-SQL code that attempts to achieve the same
thing, you would get the same plan—and only the best plan, of course. But alas, we're not
there yet. You still have many performance improvements to gain merely from changing the
way you write your code. This will be demonstrated thoroughly throughout these books. Here,
I'll demonstrate a typical tuning process based on code revisions by following an example.

Note that set-based queries are typically superior to solutions based on iterative/procedural
logic—such as ones using cursors, loops, and the like. Besides the fact that set-based
solutions usually require much less code, they also usually involve less overhead than cursors.
A lot of overhead is incurred with the record-by-record manipulation of cursors. You can
make simple benchmarks to observe the performance differences. Run a query that simply
selects all rows from a big table, discarding the results in the graphical tool so that the time
it takes to display the output won't be taken into consideration. Also run cursor code that
simply scans all table rows one at a time. Even if you use the fastest available cursor—FAST_
FORWARD (forward only, read only)—you will find that the set-based query runs dozens of
times faster. You can express the cost of processing n rows in a table using a set-based query
as n and then processing the same number of rows with a cursor that can be expressed as

n + nxo, where o represents the overhead associated with a single row manipulation with
the cursor. Besides the overhead involved with a cursor, you'll also have an issue with the
execution plans. When using a cursor, you apply a very rigid physical approach to accessing
the data because your code focuses a lot on how to achieve the result. A set-based query, on

Chapter 4 Query Tuning 269

the other hand, focuses logically on what you want to achieve rather than how to achieve it.
Typically, set-based queries leave the optimizer with much more room for maneuvering and
leeway to do what it is good at—optimization.

That's the rule of thumb. However, I'm typically very careful with adopting rules of thumb,
especially with regard to query tuning—because optimization is such a dynamic world, and
there are always exceptions. In fact, as far as query tuning is concerned, my main rule of
thumb is to be careful about adopting rules of thumb.

You will encounter cases where it is very hard to beat cursor code, and you need to be able to
identify them; but these cases are the minority. I'll discuss the subject at length in Chapter 8,
“Cursors,” of Inside T-SQL Programming.

To demonstrate a tuning process based on code revisions, I'll use our Orders and Shippers
tables. The request is to return shippers that used to be active but do not have any activity
as of 2004. That is, a qualifying shipper is one for whom you cannot find an order on or after
2004. You don't care about shippers who have made no orders at all.

Before you start working, remove all indexes from the Orders table and make sure that
you have only the clustered index defined on the orderdate column and the primary key
(nonclustered) defined on the orderid column.

If you rerun the code in Listing 4-1, make sure that for the Orders table, you keep only the
following index and primary key definitions:

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);
ALTER TABLE dbo.Orders ADD
CONSTRAINT PK_Orders PRIMARY KEY NONCLUSTERED(orderid);

Next, run the following code to add a few shippers to the Shippers table and a few orders to
the Orders table:

INSERT INTO dbo.Shippers(shipperid, shippername) VALUES
('B", 'Shipper_B'),
('D', 'Shipper_D'),
('F', 'Shipper_F'),
('H', 'Shipper_H'"),
('X', 'Shipper_X"),
'Y', 'Shipper_Y'"),
('2"', 'Shipper_Z");

INSERT INTO dbo.Orders(orderid, custid, empid, shipperid, orderdate) VALUES
(1000001, 'C0000000001', 1, 'B', '20030101"),
(1000002, 'C0000000001', 1, 'D', '20030101"),
(1000003, 'C0000000001', 1, 'F', '20030101"),
(1000004, 'C0000000001', 1, 'H', '20030101');

You're supposed to get the shipper IDs B, D, F, and H in the result. These are the only shippers
that were active at some point but not as of 2004.

270 Inside Microsoft SQL Server 2008: T-SQL Querying

In terms of index tuning, it's sometimes hard to figure out what the optimal indexes are without
having an existing query to tune. But in our case, index tuning is rather simple and possible
without having the solution code first. Obviously, you will want to search for the maximum
orderdate value for each shipperid, so naturally the optimal index would be a nonclustered
covering index defined with shipperid and orderdate as the key columns, in that order:

CREATE NONCLUSTERED INDEX 1idx_nc_sid_od
ON dbo.Orders(shipperid, orderdate);

| suggest that at this point you try to come up with the best-performing solution that you
can and then compare it with the solutions that | will demonstrate.

As the first solution, I'll start with the following cursor-based code:

DECLARE
@sid AS VARCHAR(S),
@od AS DATETIME,

@prevsid AS VARCHAR(5S),
@prevod AS DATETIME;

DECLARE ShipOrdersCursor CURSOR FAST_FORWARD FOR
SELECT shipperid, orderdate
FROM dbo.Orders
ORDER BY shipperid, orderdate;

OPEN ShipOrdersCursor;
FETCH NEXT FROM ShipOrdersCursor INTO @sid, @od;
SELECT @prevsid = @sid, @prevod = @od;

WHILE @@fetch_status = 0

BEGIN
IF @prevsid <> @sid AND @prevod < '20040101' PRINT @prevsid;
SELECT @prevsid = @sid, @prevod = @od;
FETCH NEXT FROM ShipOrdersCursor INTO @sid, @od;

END

IF @prevod < '20040101' PRINT @prevsid;
CLOSE ShipOrdersCursor;
DEALLOCATE ShipOrdersCursor;

This code implements a straightforward data-aggregation algorithm based on sorting. The
cursor is defined on a query that sorts the data by shipperid and orderdate, and it scans the
records in a forward-only, read-only manner—the fastest scan you can get with a cursor. For
each shipper, the code inspects the last row found—which happens to hold the maximum
orderdate for that shipper—and if that date is earlier than '20040101’, the code emits the
shipperid value. This code ran on my computer for 28 seconds. Imagine the run time in a
larger Orders table that contains millions of rows.

Chapter 4 Query Tuning 271

The next solution (call it set-based solution 1) is a natural GROUP BY query that many
programmers would come up with:

SELECT shipperid

FROM dbo.Orders

GROUP BY shipperid

HAVING MAX(orderdate) < '20040101';

You just say what you want rather than spending most of your code describing how to get
it. The query groups the data by shipperid, and it returns only shippers with a maximum
orderdate that is earlier than '20040101".

This query ran for about one second on my computer. The optimizer produced the execution
plan shown in Figure 4-67 for this query.

IE
5 3 1 I
Filter Stream Aggregate Index Scan _(NonC'Ius_ter‘ed)
Cost: 0 % (Agaregate] [Orders]. [{dx_nc_sid_od]
Cost: 16 % Cost: 84 %
Index Scan [NonClustered)
Scan a honclustered index, entirely ar only a range,
Physical Operation Index Scan
Logical Operation Index Scan
Actual Number of Rows 1000004
Estimated IO Cost 2.01572
Estimated CPU Cost 110016
Estimated Number of Executions 1
Number of Executions 1
Estimated Operator Cost 311587 (843
Estimated Subtree Cost 311587
Estimated Number of Rows 1000000
Estimated Row Size 206
Actual Rebinds 0
Actual Rewinds i}
Ordered True
Node ID 2
Object
[Perfarmance].[dbo].[Orders] [idx_nc_sid_od]
Output List
[Perfarmance].[dbol [Orders]shipperid,
[Perfarmance].[dbol.[Orders] orderdate

FIGURE 4-67 Execution plan for set-based solution 1

The plan shows that our covering index was fully scanned in order. The maximum orderdate
was isolated for each shipperid by the Stream Aggregate operator. Then the filter operator
filtered only shippers for whom the maximum orderdate was before '20040101".

Here are the vital performance measures | got for this query:

B |ogical reads 2736
® CPU time 562 ms
B FElapsed time 1224 ms

272

Inside Microsoft SQL Server 2008: T-SQL Querying

Note that you might get slightly different performance measures. At this point, you need to
ask yourself if you're happy with the result and, if you're not, whether you have potential for
optimization at all.

Of course, this solution is a big improvement over the cursor-based one in terms of both
performance and code readability and maintenance. However, a run time of close to one
second for such a query might not be satisfactory. Keep in mind that an Orders table in some
production environments can contain far more than one million rows.

If you determine that you want to tune the solution further, you now need to figure out
whether you have potential for optimization. Remember that in the execution plan for the
last query, the leaf level of the index was fully scanned to obtain the latest orderdate for each
shipper. That scan required 2,736 page reads. Our Shippers table contains 12 shippers. Your
gut feeling should tell you that you must be able to find a way to obtain the data with far
fewer reads. In our index, the rows are sorted by shipperid and orderdate. This means that

in some groups of rows—a group for each shipperid—the last row in each group contains
the latest orderdate that you want to inspect. Alas, the optimizer currently doesn’t have

the logic within it to “zigzag” between the levels of the index, jumping from one shipper’s
latest orderdate to the next. If it did, the query would have incurred substantially less 1/O. By
the way, such zigzagging logic can be beneficial for other types of requests—for example,
requests involving filters on a nonfirst index column and others as well. But | won't digress.

Of course, if you request the latest orderdate for a particular shipper, the optimizer can use a
seek directly to the last shipper’s row in the index. Such a seek would cost three reads in our
case. Then the optimizer can apply a TOP operator going one step backward, returning the
desired value—the latest orderdate for the given shipper—to a Stream Aggregate operator.

The following query demonstrates acquiring the latest orderdate for a particular shipper,
producing the execution plan shown in Figure 4-68:

SELECT MAX(orderdate) FROM dbo.Orders WHERE shipperid = 'A';

3 :
S| 3E S| 1y
Stream Aggregate To Index Seek (MonClustered)
CAggregate) Cost'pO % [Orders]. [1dx_nc_sid_od]
Cost: 0 % : ’ Cost: 100 %

FIGURE 4-68 Execution plan for a query handling a particular shipper

This plan incurs only three logical reads. Now, if you do the math for 12 shippers, you will
realize that you can potentially obtain the desired result with substantially less /O than 2,736
reads. Of course, you could scan the Shippers rows with a cursor and then invoke such a
query for each shipper, but it would be counterproductive and a bit ironic to beat a cursor
solution with a set-based solution that you then beat with another cursor.

Chapter 4 Query Tuning 273

Realizing that what you're after is invoking a seek operation for each shipper, you might
come up with the following attempt as a step toward the solution (prior to filtering):

SELECT shipperid,

(SELECT MAX(orderdate)

FROM dbo.Orders AS O

WHERE O.shipperid = S.shipperid) AS maxod
FROM dbo.Shippers AS S;

You query the Shippers table, and for each shipper, a subquery acquires the latest orderdate
value (aliased as maxod).

But strangely enough, you get the plan shown in Figure 4-69, which looks surprisingly similar
to the previous one in the sense that a full ordered scan of the index on the Orders table is
used to calculate the MAX aggregate.

e I o
! ; iy
Merge Join Stream Aggregate Index Scan (MonClustered)
(Right Cuter loin) (Aggregate) [Orders]. [idx_nc_=id_od].
Cost: 0% Cost: 16 % Cost: B4 ¥
|3
)

Clustered Tndex Scan (CI
[Shippers]. [FK_Shippers]..
Cost: 0 %

= =
Compute Scalar
Cost: 0%

FIGURE 4-69 Execution plan for query with subquery and MAX

You may have expected the optimizer to first scan the 12 shippers from the Shippers table
and then use a loop that for each shipper applies a seek operation in the index to pull the
max orderdate for that shipper. Of course, without access to the optimizer’s code it would be
hard to tell why you didn't get the plan you expected. Fortunately, | got an explanation from
Cesar Galindo-Legaria, who does have such access. It appears that this query fell victim to an
attempt the optimizer made to improve the query performance, while in practice it ended
up hurting it. The optimizer unnested the correlated subquery, converting it internally to a
join. The reason that the optimizer applies such rearrangements is that the join form tends
to be optimized better (enables better cardinality estimates and navigational strategies from
both sides). However, the join form prevents the special scalar aggregate optimization over
an index that we want to see here. The reason that the optimizer doesn't reintroduce the
correlation (that would allow the scalar aggregate optimization) is that the exploration space
explodes easily. As a result the current plan is far from ideal. This query incurred 2,736 logical
reads against the Orders table and ran for close to one second on my computer. It seems
that the optimizer got too sophisticated this time.

274

Inside Microsoft SQL Server 2008: T-SQL Querying

The situation seems to be evolving into a battle of wits with the optimizer—not a battle to
the death, of course; there won't be any iocane powder involved here, just I/O. The optimizer
pulls a trick on you; now pull your best trick. One attempt before considering a complete
rewrite of the solution is to use a logically equivalent query but with the TOP option instead
of MAX. The reasoning behind trying this trick is that from observations of many plans, it
appears that the optimizer does not unnest subqueries when you use TOP.

You issue the following query, close your eyes, and hope for the best:

SELECT shipperid,
(SELECT TOP (1) orderdate
FROM dbo.Orders AS O
WHERE O.shipperid = S.shipperid
ORDER BY orderdate DESC) AS maxod
FROM dbo.Shippers AS S;

And when you open your eyes, voila! You see the plan you wished for, as shown in Figure 4-70.

= E | tc] (5
= Mested Loops Clustered Index Scan (C1..
Coqiiii if%]ar (Left Outer loin)d [shippers]. [PK_Shippers]..
) ? Cost: 1 % Cost: 39 %
— +
=l 5y
—— e Index Seek (MonClustered)
Ta Compute Scalar . =
Cost:pO 5 é;st: 0y Lorders]. [1dx_nc_s1d_od] ..

Cost: 60 %

FIGURE 4-70 Execution plan for query with subquery and TOP

The Shippers table is scanned, and for each of the 12 shippers, a Nested Loops operator
invokes a similar activity to the one you got when invoking a query for a particular shipper.
This plan incurs only 2 logical reads against Shippers and 36 logical reads against Orders.
The net CPU time is not even measurable with STATISTICS TIME (shows up as 0), and | got
about 100 milliseconds of elapsed time. You can now slightly revise the code to have the
subquery in the WHERE clause and filter only the shippers with a maximum order date that is
before 2004, like so (call it set-based solution 2):

SELECT shipperid
FROM dbo.Shippers AS S
WHERE
(SELECT TOP (1) orderdate
FROM dbo.Orders AS O
WHERE O.shipperid = S.shipperid
ORDER BY orderdate DESC) < '20040101';

The plan is very similar to the one you got prior to filtering, but with an additional filter
operator, as you can see in Figure 4-71.

Chapter 4 Query Tuning 275

‘C -4,
= n tc])
. Mested Loops Clustered Index Scan (C1
CégiiEﬁiﬂf C;;gﬁeg‘y (Inner Join) [Shippers].[FE_Shippers].
: ? : ? Cost: 1% Cost: 39 %
N
=
Top Index Seek (NonClustered)
Cost: 0 % Lorders]. lidx_nc_sid_od]..

Cost: 60 %

FIGURE 4-71 Execution plan for set-based solution 2

Once you get over the excitement of outwitting the optimizer, you start having some
troubling thoughts. Why is it that the optimizer doesn’t unnest subqueries when using
TOP? In some cases it makes sense not to unnest—when there’s the possibility that the
nested and unnested forms would yield different results. But there are cases, like in our
query, where both forms would yield the same results. The SQL Server developers know
that many programmers and DBAs use the TOP option as a way to force the optimizer
not to unnest subqueries and therefore are reluctant to change this optimizer's behavior.
But it's hard to say how long the developers would keep restraining the optimizer in
this manner. What if in a future version of SQL Server or perhaps a future service pack
the developers won't restrain the optimizer anymore? Then SQL Server could internally
translate our TOP query to the logically equivalent MAX or MIN version, and then you
would get the inefficient plan for the aforementioned reasons.

And if this is not confusing enough, see what happens if you make slight revisions (logically
meaningless ones, mind you) to the MAX version of the solution:

SELECT shipperid
FROM dbo.Shippers AS S
WHERE
(SELECT DISTINCT MAX(orderdate)
FROM dbo.Orders AS O
WHERE O.shipperid = S.shipperid) < '20040101"';

SELECT shipperid
FROM dbo.Shippers AS S
WHERE
(SELECT TOP (1) MAX(orderdate)
FROM dbo.Orders AS O
WHERE O.shipperid = S.shipperid) < '20040101"';

In both cases you get the more efficient plan that first scans the 12 shippers and in a loop
pulls the maximum order date with a seek against the index on the Orders table.

In short, I'd be reluctant to rely on any of the preceding variations just because of the big
impact that the slight revisions have on the way the query is optimized. In this sense I'd
consider the optimization of this general form of the solution unstable. I'd keep looking for
alternatives that are more stable.

276 Inside Microsoft SQL Server 2008: T-SQL Querying

If you look hard enough, you will find this one (call it set-based solution 3):

SELECT shipperid

FROM dbo.Shippers AS S

WHERE NOT EXISTS
(SELECT * FROM dbo.Orders AS O
WHERE O.shipperid = S.shipperid

AND O.orderdate >= '20040101")

AND EXISTS
(SELECT * FROM dbo.Orders AS O
WHERE O.shipperid = S.shipperid);

This solution is natural and in fact is quite a literal translation of the English phrasing of the request.
You query the Shippers table and filter shippers for whom you cannot find an order on or past
‘20040101 and for whom you can find at least one order. You get the plan shown in Figure 4-72.

- 5 @ ks
Mested Loops Mested Loops Clustered Index Scan (C1.
(Left Semi Join) (Left Anti Semi Join) [Shippers]. [PK_Shippers]..
Cost: 0 % Cost: 0% Cost: 28 %
— +5

‘JJ

%5_ Index Seek (MonClustered)

cost. oy lorders].lidx_nc_sid_od].
: ? Cost: 42 %

4

13y

Index Seek {MonClustered]
lOrders]. [1dx_nc_sid_od]..
Cost: 30 %

FIGURE 4-72 Execution plan for set-based solution 3

The Shippers table is scanned, yielding 12 rows. For each shipper, a Nested Loops operator
invokes a seek against our covering index to check whether an orderdate of '20040101' or
later exists for the shipper. If the answer is no, another seek operation is invoked against
the index to check whether an order exists at all. The I/O cost against the Orders table is
59 reads—slightly higher than the previous solution. However, in terms of simplicity and
naturalness, this solution wins big time! Therefore, | would stick to it.

As you probably realize, index tuning alone is not enough; you can do much with the way
you write your queries. Being a Matrix fan, I'd like to believe that it's not the spoon that
bends; it's only your mind.

Conclusion

This chapter covered a tuning methodology, index tuning, the importance of sample data, and
query tuning by query revisions. So much is involved in tuning, and knowledge of the product'’s
architecture and internals plays a big role in doing it well. But knowledge is not enough. | hope
this chapter gave you the tools and guidance that will allow you to put your knowledge into
action as you progress in these books—and, of course, in your production environments.

Chapter 5
Algorithms and Complexity

Steve Kass

This chapter contains a brief introduction to a central topic in computer science: algorithms
and complexity. In theory, modern computers can solve nearly any problem that can be
expressed precisely. In practice, however, we encounter two considerable obstacles: No
computer can solve problems without valid strategies or methods for solving them, and
valid problem-solving strategies and methods are useful only if they yield answers within a
reasonable amount of time.

Strategies and methods for solving particular problems, given arbitrary input, are called
algorithms. The computational complexity of a problem-solving algorithm measures the way
in which the resources needed to execute the algorithm depend on the input for which the
problem is to be solved.

Some algorithms require—for correctness, efficiency, or both—data to be organized in
a particular way. A data structure is a scheme for organizing data to support efficient
algorithms, and most algorithms assume—either implicitly or explicitly—particular
data structures.

In some respects, database programmers need to know considerably less about algorithms
and complexity than other programmers, such as systems programmers. Recall that SQL

is a fourth-generation, declarative programming language. An SQL program describes the
desired result, and the RDBMS implementation analyzes the description and then chooses
and implements an efficient algorithm to produce the result. The mere fact that correct
implementations of SQL exist is remarkable; the fact, that there exist astoundingly good
implementations, like Microsoft’s, is nothing short of miraculous. The modern RDBMS is not
only a testament to its creators; it's also a testament to the foundations of computer science,
which provided the mathematical framework for conceiving, developing, and validating such
a complex system.

Many excellent books on algorithms and complexity are available, and they typically include
a catalog of important algorithms and analyses of their complexity. In this chapter, | will
instead describe some real-world problems that serve as good analogies to get you thinking
about some of algorithms Microsoft SQL Server implements. These problems, which for
small input are hand solvable, demonstrate some fundamental patterns of complexity,

and they illustrate in a concrete way several factors that affect the running time and space
requirements of important algorithms.

277

278

Inside Microsoft SQL Server 2008: T-SQL Querying

Do You Have a Quarter?

Many of you probably have a change jar somewhere—a container full of coins. From time

to time, you might dig into your change jar to find a quarter,! and the process of doing so is
probably second nature. Partly because it's so familiar, the process of retrieving a quarter from
a change jar will be a useful example for the discussion of algorithms and complexity. While a
coin isn't exactly data, retrieving a quarter is much like executing this T-SQL SELECT query:

SELECT TOP (1) Coin

FROM ChangeJar

WHERE Denomination = 0.25
ORDER BY (SELECT NULL);

How to Retrieve a Quarter from a Coin Jar

I'm sure you know more than one algorithm for executing this task—to retrieve a quarter
from a coin jar. Most of the time, you look into the jar, spot a quarter at the top, and pull it
out. Every now and then, however, there's no quarter at the top, and you have to dig deeper.
When this happens, you might shake the jar or stick your hand into it and mix the coins up,
expecting to find a quarter at the top again after the mixing. If you still can't find a quarter,
you might empty the coins onto your kitchen counter and spread them out so that you

can hunt through your coins more quickly than you can when they're all in the jar. This last
strategy, of course, requires you have a kitchen counter (or other flat surface) nearby that you
can clear off before emptying the coins onto it. If you try to do this right before suppertime,
you might have to wait a little while or abandon the strategy.

You can see from this example that how—and how quickly—you can find a quarter in a coin
jar depends on many things: what'’s in the jar, how the jar's contents are distributed, how
you go about looking, and what other tools (like a table) are at your disposal, just to name a
few. More obscure factors, too, can affect both your strategy and its efficiency: how bright
the room lights are, how big your hands are compared to the size of the jar's mouth, how
full the jar is (because shaking a full jar doesn't do a good job of mixing up its contents), and
whether someone else is also retrieving a quarter from of the same jar (or preparing dinner)
at the same time as you. How many other factors can you think of?

The various strategies for retrieving a quarter, as well as the factors that affect how well each
strategy works, all have analogs both in the abstract study of algorithms and complexity
and in the practical matter of executing queries in a SQL Server database. For example, the
kitchen counter corresponds to both the abstract notion of space and the real SQL Server
data cache. Shaking the coin jar corresponds to randomizing the distribution of values in the
algorithm'’s input or changing the SQL Server statistics for an index or table.

1 A quarter is the largest commonly circulating US coin, and it is worth 25 cents, or one-quarter dollar. If digging for
quarters isn't something you do often enough to have a “feel” for it, use an analogous scenario, with any common
coin instead of quarters.

Chapter 5 Algorithms and Complexity 279

Sometimes the Jar Has No Quarters

Just because you need a quarter doesn’t mean you have a quarter, and it's certainly possible
your jar is full of pennies, nickels, and dimes—and perhaps a few buttons and some pocket
lint—but no quarters. If you run into this situation too often, you might consider rethinking
your coin storage strategy and devise a system that will let you know right away that you've
run out of quarters. For example, you might replace your change jar with two jars: one for
quarters and one for everything else. You won't be able to empty your pockets as quickly
because you'll have to separate the quarters from the rest of the change, but when you go
looking for change, you'll know right away whether you have any quarters.

Note If you're like me, the two-jar solution won't really work. After a long day, I'd throw
all my change, quarters included, into the nonquarters jar. Integrity constraints like CHECK
(denomination <> 0.25) are one reason an RDBMS is better than a room full of jars!

I've described two coin storage setups: a one-jar setup, which optimizes the task of storing
coins, and a two-jar setup, which optimizes the task of retrieving single quarters (whether
this task is successful or not). The abstract analog in this case is the idea of a data structure,
and the practical analog is the design of a database—choosing how to represent real-world
information using database tables and how to arrange the information in tables with indexes.
To analyze and design computer programs that are effective and efficient, it's important
(and rewarding) to understand the complex and beautiful interplay between data structures,
algorithms, and complexity. If you enjoy it, | can guarantee it will never bore you.

Pay close attention to day-to-day problem-solving tasks like digging for change. If you do,
you'll develop insight into the algorithms and complexity of more abstract problem-solving
tasks like those that come up in database management.

How Algorithms Scale

The jargon of database management uses the word scale in phrases such as scale out, scale up,
and scalable solution. To talk about how a system or algorithm scales is to talk about how the
system or algorithm is affected by changes (usually increases) in the amount of input data.

A naive expectation about scaling is to expect this behavior: if there's twice as much data, it
will take twice as long to process the data. While some systems and algorithms behave that
way, many don't. Some tasks take the same amount of time regardless of the amount of
data. For these tasks, if there’s twice as much data, it will take no longer to process the data.
An example is the task of retrieving a quarter from a jar of quarters. No matter how full the
jar is, it takes one simple step to retrieve a quarter from the jar (or, if the jar is empty, to fail
at the task). For other tasks, it might take four times as long to process twice as much data.
For some kinds of tasks, twice as much data might take so much longer to process that you'd
never live to see the result!

280

Inside Microsoft SQL Server 2008: T-SQL Querying

An Example of Quadratic Scaling

One of my first encounters with a real-world scaling problem and with naive expectations
about scaling took place in 1969 in my eighth-grade metalworking class. One of the projects
was to build a 5-by-7-inch folder out of sheet metal, hinged at the top. | wanted to build a
folder twice as big (10-by-14 inch) so that | could use it for standard notebook paper. Shop
class students had to pay for the materials they used, and for this project, that meant three
pieces of metal (two pieces of sheet metal for the front and back of the folder and one
length of hinged metal for the shorter side) and a few rivets or screws. The teacher agreed to
let me build a double-sized folder, as long as | paid double for the materials. Of course my
folder needed more than twice as much metal.

Let's do the actual calculation, assuming the flat metal cost $0.01/square inch and the hinge
cost $0.10/inch, ignoring the cost of the rivets and screws. The details for several different
sizes of notebook, including the two sizes mentioned here, are shown in Table 5-1.

TABLE 5-1 Cost of Materials for Metal Folders

Folder size 5" by 7" 10" by 14" 50" by 70" 100" by 140"
Sheet metal required 70sg.in. 280 sq. in. 7,000 sg.in 28,000 sq. in.
Cost of sheet metal $0.70 $2.80 $70.00 $280.00
Length of hinge required 5 inches 10 inches 50 inches 100 inches
Cost of hinge $0.50 $1.00 $5.00 $10.00

Total cost of materials $1.20 $3.80 $75.00 $290.00

The cost of materials for my double-sized 10-by-14-inch folder was about 3.17 times the cost
of materials for the 5-by-7-inch folder. Note that doubling the dimensions doesn’t always
increase the cost of materials by a factor of 3.17. The materials for a 100-by-140-inch folder
cost about 3.87 times as much as for a 50-by-70-inch folder.

The relationship between notebook size and materials cost in this example is called quadratic.
We'll see why a bit later in the chapter.

An Algorithm with Linear Complexity

Recall that the way in which an algorithm’s cost depends on its input size is called the
algorithm’s complexity. When an algorithm’s complexity agrees with the naive expectation
(twice the input requires twice the cost), the algorithm is said to have /inear complexity because
the graph of cost as a function of input size in this case is (or more precisely, approaches) a
straight line.

One algorithm with linear complexity is the algorithm for finding the largest number in
an unordered list as follows: allocate a variable to keep track of one number, initialize that
variable to the value of the first item in the list, and then inspect the remaining items in
the list one by one, overwriting the value of the variable each time a larger value is found

Chapter 5 Algorithms and Complexity 281

in the list. Of course, if the numbers in the list are in order, you can find the largest number
in the list much more quickly: just look at the end of the list, where the largest number must
be. The trade-off is that you must maintain the ordering of the list.

Exponential and Superexponential Complexity

As the input size grows, some algorithms become more expensive at a truly astonishing rate.
Unfortunately, for many important problems the only known algorithms exhibit exponential
or superexponential complexity, and these problems are effectively unsolvable for all but the
very smallest inputs.

One problem with superexponential complexity is the minimum bin packing problem, where
the goal is to pack a collection of items into the fewest possible number of bins of fixed capacity.

The Minimum Bin Packing Problem

Given a collection of n items with weights w;, w,, ..., w, and an unlimited supply of
empty bins, each with capacity C, where C is no smaller than the weight of the heaviest
item, what is the smallest number of bins into which the items can be distributed
without exceeding the bin capacity?

All known algorithms for solving the bin packing problem effectively consider every
possible arrangement of the items, and this requires a number of computational steps
that grows exponentially with the number of items n.

Fortunately, there are efficient ways to solve the bin packing problem approximately
that will require no more than 1% times the optimal number of bins.

The Factorial Function

As | pointed out in the sidebar, all known algorithms for solving the bin packing problem
effectively consider every possible arrangement of the n input items. How many arrangements
is that? For a small number of items, it's easy to list all the arrangements and count them.
Three items, A, B, and C, can be arranged in six ways: ABC, ACB, BAC, BCA, CAB, and CBA. Four
items can be arranged in 24 ways—there are six ways to arrange the items A, B, and C, and

for each one, there are four different places to “drop in” item D. For example, you can drop
item D into the arrangement BAC in these four ways: PBAC, BPAC, BAPC, and BACP. Increasing
the number of items from three to four therefore quadrupled (multiplied by four) the number
of arrangements—from 6 to 24. In the same way, increasing the number of items from four to
five will quintuple the number of arrangements—from 24 to 120.

There's a simple mathematical pattern to these numbers 6, 24, and 120: 6 = 3x2x1,

24 = 4x3x2x1, and 120 = 5x4x3x2x1. The pattern continues, and the number of arrangements
of n items is the product of the integers 1 through n. The notation n/, called the factorial
function of n or n factorial, represents the product of the integers from 1 through n.

282

Inside Microsoft SQL Server 2008: T-SQL Querying

Because there are n! arrangements to consider, it takes at least n/ computational steps to
solve the minimum bin packing problem for n input items. Later in this chapter, you'll see
why the growth rate of n! as a function of n is called superexponential, and you'll also
see why problems like this one are considered unsolvable.

Sublinear Complexity

By necessity, if you want to determine something about data, you have to inspect the data.
For example, to determine the lowest salary among an organization’s employees, you need
to inspect each employee’s salary. This suggests that there are never algorithms that can
handle n items in less than n operations or that n is the most efficient complexity possible.
An algorithm that handles input size n with complexity better than n is called a sublinear
algorithm. Are there any algorithms with sublinear complexity?

Yes, there are. We saw one such algorithm earlier. The quarter-retrieval problem can be solved
in a single operation, regardless of the number of coins, if the coins are organized in two
jars—one for quarters and one for other coins. At first, you might consider this strategy for
achieving sublinear performance to be a bit of a cheat. After all, it takes at least n steps to
organize n coins, so even if the retrieval of a quarter can be accomplished in one step, the entire
workload of organizing n coins, then retrieving a quarter, takes at least n steps. However, you
need to organize the coins only once. Once you've organized the coins into two jars, you can
retrieve quarters repeatedly using the fast algorithm (take a coin from the quarters jar).

If you can solve a problem in sublinear time, it must be the case that you don't need to
inspect all the data to solve the problem. Later in this chapter, we'll see examples of problems
that can be answered without looking at all the data. In some cases, it's obvious this is
possible; in other cases, it's not, and the algorithms are surprisingly clever.

Binary Search

When data is well maintained, many tasks are easier to solve. For example, the binding of
this book maintains the book’s pages in order. Page 50 comes right before page 51 and so
on. If | asked you to turn to page 273, you could do so relatively quickly—not immediately

in a single step but quickly—and probably in a dozen or fewer steps. If the book were twice
as long, it's unlikely it would take more than one extra step to find a given page. Chances are
you would use a variation on binary search. The binary search algorithm allows you to find a
target value in an ordered list of n items in log, n time as follows. Go to the middle item of
the list. If the target item equals this item, you're done. If not, compare the target item with
the middle item to decide which half of the list you need to search. Next, inspect the middle
item of the half you're searching and repeat the strategy. Each inspection narrows your
search to half as many items as the previous step, so the number of items you have to inspect
equals the number of times you can divide n by 2 and get a result greater than 1. You can do
this log, n times (give or take one).

Chapter 5 Algorithms and Complexity 283

Constant Complexity

An algorithm is said to have constant complexity if it can be executed in a number of steps
that's independent of the input size. The algorithm to find a quarter in a jar of quarters is an
example of an algorithm with constant complexity. The algorithm that answers the question
“Are there any customers?” by scanning a Customers table also has constant complexity.

Technical Definitions of Complexity

Most algorithms require some fixed overhead costs regardless of input. For example, an
algorithm to count the number of rows in a table might require overhead to allocate space for
and initialize an integer variable to be incremented for each row. When the input is large, fixed
overhead is likely to be insignificant relative to the total execution cost. Comparing execution
costs for large inputs provides more insight into the essence of an algorithm’s computational
complexity. In the metal notebook example, doubling the size of a large notebook increased
the cost of materials by a factor of about 3.87, and you can check that doubling the size of

an extremely large notebook increases the cost of materials by a factor of almost exactly 4.0.
The relationship between hinge length (in inches) and materials cost (in dollars) for notebooks
having the same proportions as a 5-by-7-inch notebook can be expressed mathematically as
MaterialsCost(h) = 0.1h+0.028h2. This cost function is a quadratic polynomial.

Complexity is often expressed by the relationship between input size and cost for inputs large
enough that fixed overhead costs don't matter. Technically, this is the asymptotic complexity.
For large values of h in the preceding example, the quadratic term 0.028h? dominates the
cost, and doubling the input size approximately quadruples the cost. The single expression

h? characterizes this doubling-quadrupling behavior, and the cost in this case is said to have
asymptotic order h2.

Big Oh and related notations

Complexity is often expressed using Big Oh notation. In Big Oh notation—which uses not
only the big oh symbol O but also big theta (©), little oh (o), big omega (Q), and others—the
asymptotic cost in the previous example can be expressed this way: MaterialsCost(n) € ©(n?),
or "the cost function is in big theta of n-squared.” You can also say the cost “is n-squared” or
“grows like n-squared.”

For many algorithms that depend on more than the size of the input, it may be possible
to express the minimum and maximum possible costs as functions of the input size. These
are called the best-case complexity and worst-case complexity, respectively. It may also be
possible to determine lower and upper bounds on complexity. Big Oh notation is useful in
describing these various properties of complexity as well as other asymptotic properties of
an algorithm'’s complexity.

284

Inside Microsoft SQL Server 2008: T-SQL Querying

| won't define the Big Oh notations here; the definitions are quite technical. However, | will
point out that you're more likely to hear someone mention Big Oh than Big Theta, which

| used earlier. If you hear students of computer science refer to Big Oh, they are almost
certainly talking about algorithmic complexity, but they could mean Big Anything because
the meanings of the various notations are frequently confused.

The Big Oh family of notations are generally attributed to the late-nineteenth- and
early-twentieth-century number theorists Landau and Bachmann. Although they look like
real-valued functions, the expressions ©(n?), O(n), o(log n), and so on are not real-valued
functions. Instead, they are sets of functions, whence the preceding language "in ©(n?)".

Unfortunately, this notation is used in a number of confusing (some might say careless,
sloppy, or wrong) ways. In particular, f = O(g) is commonly written to mean not that f equals
O(g) but that f equals some element of O(g).

Note The abuse of notation here is similar to that used when describing indefinite integrals in
calculus. Neither side of the expression [x3dx = Yax* + C is a function.

Despite a few shortcomings, Big Oh notation is useful because it captures important aspects
of the relationship between input size and cost. For example every function in ©(n?) exhibits
the "twice the input, four times the cost” behavior once n is large enough. The complexity
class ©(n?) also contains all quadratic polynomials, and every function in ©(n?) is called
quadratically complex.

Big Oh notation also makes it possible to describe cost “functions” that aren't in fact
deterministic functions. In the coin jar example, the time required to find a quarter wasn't a
well-defined function of the number of coins in the jar. The time depended in part on the
number of coins in the jar but also on other features of the input, such as the proportion

of quarters and how the quarters were distributed in the jar, to name two. Although
QuarterRetrievalTime(n) isn't a function, we know that the time required to retrieve a quarter
(or fail to retrieve a quarter, if there are no quarters) is at worst proportional to n. In Big Oh
notation, this is easy to say: QuarterRetrievalTime(n) = O(n).

Polynomial and Nonpolynomial Complexity

As we saw earlier, the cost functions 0.028n2 and n? are both in the complexity class ©(n?)
because they both exhibit the “twice the input, four times the cost” behavior for large inputs.
On the other hand, the behavior of the cost function n? is “twice the input, eight times

the cost,” and n? is not in the class ©(n?). In general, if the asymptotic behavior of a cost
function C(n) is “twice the input, k times the cost” for some positive constant k, C(n) is in the
complexity class ©(n?), where p = log, k. The complexity classes O(nP) for different values

of p are distinct, but if C(n) is in O(n?) for any value of p > 0, C(n) is said to have polynomial
complexity. The class of functions with polynomial complexity is called P. Many real-world
problems have complexity nP—typically for p-values between 0 and 4.

Chapter 5 Algorithms and Complexity 285

The cost function for the minimum bin packing problem, n/, and, unfortunately, the

cost functions for quite a few important real-world problems, have nonpolynomial complexity
because they grow too quickly to belong in P. Functions with nonpolynomial complexity include
27 (which is the number of subsets of an n-element set), 3" (the number of ways to assign a truth
value of True, False, or Unknown to each of n propositions), n! (the number of arrangements of
n items), 2™ (the number of distinct binary relations on an n-element set), and n” (the number
of ways to match the elements of one n-element set to the elements of another).

If an algorithm has polynomial complexity, it's generally possible to accommodate an
increase in input size with additional resources. On the other hand, if an algorithm has
nonpolynomial complexity, it's generally impossible to use it for all but very small inputs,

and scaling may be out of the question. Problems for which the only known algorithms have
nonpolynomial complexity are called intractable. They aren't unsolvable because there are
algorithms to solve them, but for all practical purposes, they might as well be unsolvable—for
large input, the algorithms won’t come up with a solution in anyone’s lifetime.

Comparing Complexities

The central processing unit (CPU) of a typical computer today can execute a few billion?
low-level instructions per second. Higher-level operations like those expressed as statements
in a language like C# or Fortran require multiple machine instructions, and a reasonable
benchmark to use for comparing complexities is a million steps per second. The sidebar
“Sorting a Million Numbers” describes a quick test that affirms this benchmark.

Sorting a Million Numbers

In Chapter 6, “"Subqueries, Table Expressions, and Ranking Functions,” you'll find

the code to create Nums, a million-row table of integers. The query below sorts the
1,000,000 integers in Nums according to the value of REVERSE(n), for which there's

no supporting index. This query took 21 seconds to execute on my single-core home
computer. You don't have to jump to Chapter 6 and find the definition of Nums. You
can use any million-row table you might have handy. Select one column and order it by
an expression that isn't indexed.

USE InsideTSQL2008;
GO

SELECT n
FROM dbo.Nums
ORDER BY REVERSE(n);

2 |n this book, billion means 10°. In the UK and Australia, the word billion (or a linguistic cognate) historically
described the larger number 1012 If confusion is possible, it's safe to describe 10° as a thousand million.

286 Inside Microsoft SQL Server 2008: T-SQL Querying

According to the estimated (nonparallel) execution plan for this query, 97 percent of
the cost goes to the Sort operator. The complexity of SQL Server’s sorting algorithm is
n log, n. For n=1,000,000, n log, n microseconds is about 19.9 seconds, which is very
close to 97 percent of the actual elapsed time.

Note Before running the query, | selected the option Discard Results after Query
Executes in Management Studio for both text and grid results. You can find it by choosing

Query Options from the shortcut menu of the query editor. This way, the elapsed time
corresponded to the time it took to sort the results, not the time it took to present them.

Using this benchmark, Table 5-2 compares the running time of algorithms that take log n, n,
nlog n, n?, n3, and 2" steps to process input of size n for various values of n from 10 to 1010
(10 billion). Times well below a millisecond are denoted by negligible, and other times are
rounded and expressed in the most meaningful units.

TABLE 5-2 Running Times for Various Input Sizes and Complexities

Complexity n =10 n=20 n=100 n=1000 n=106 n=10° n=10%

logn negligible negligible negligible negligible negligible negligible negligible

n negligible negligible negligible 1ms lsecond 15 min. 3 hours

nlogn negligible negligible 1ms 10 ms 20 secs. 8 hours 4 days

n? negligible negligible 10 ms lsecond 12 days 310 3 million

centuries years

n3 1ms 8 ms lsecond 20 min. 310 forever forever*
centuries

2n 1ms 15 min. forever* forever forever forever forever

Lest you think forever is an exaggeration, the two entries marked with an asterisk—not the
longest times in the table—are each about 40 billion billion years, and yes, that's 40 billion
billion, not just 40 billion.

What may be more surprising than the things that take forever is how much longer it takes to
use an n? algorithm than an n log n algorithm for large n.

Classic Algorithms and Algorithmic Strategies

Before the middle of the twentieth century, computing technology wasn’t powerful enough
to handle what we consider fundamental computational tasks today—searching and
sorting, network optimization, data compression, encryption, and so on—at least not on

a large scale. Consequently, few people had put their energy into finding algorithms for
these tasks.

Chapter 5 Algorithms and Complexity 287

In this section we'll look at a few algorithms and strategies that are now considered classic,
although in many cases they were developed within the last 50 years. You can find many
excellent books and online sources that describe and analyze these and other algorithms
in detail. One of my favorites is Introduction to Algorithms, Second Edition, by Cormen,
Leiserson, Rivest (for whom the R in RSA encryption stands), and Stein.

Algorithms for Sorting

Arranging data in a prescribed order is a fundamental data processing task: alphabetizing
a list of names, arranging books on a shelf or in a bookstore or library, listing businesses
by their proximity to a consumer, or numbering search results by relevance—these are all
examples of sorting. Often, data needs to be sorted for it to be searched efficiently.

In this section, I'll describe several important sorting algorithms for the general problem of
putting items into a specified order. Some are valid for data stored in an array, and some are
valid for data stored in a (linked) list, and some work in either case.

Arrays and Lists

An array is a data structure that allows single-step access to any item given its current
ordinal position. In other words, if you need to inspect the 328th item, you can access it
directly, without having to start at the first item and move 327 steps forward. This kind
of access to the items is called random access. If an array is named A, the item in ordinal
position j is usually called A[j].

A list is a data structure that, like an array, keeps data in order but where items can

be accessed only from the beginning (or from either the beginning or the end). This
kind of access is called sequential access. If a list is called L, the first element of the list
is usually called the head item of the list, and the last item is called the tail item. If x is
one of the items in L, the item before x is called its predecessor, and the item after L is
called its successor. There's no standard notation for the item in ordinal position j of a
list L because it can't be accessed directly.

While arrays are optimized for random access, lists are typically optimized for inserting
and deleting data. If the 219th item of a 1,000-item array is deleted, the last 781 items
must be moved: the item that was 220th must be moved to the 219th position, the
221st to the 220th position, and so on. If an item is deleted from a list, its predecessor
can simply consider its successor to come next.

Note It's also possible to store data in order and suffer the worst aspects of both arrays and
lists. Magnetic tape drives are like lists in that they only allow sequential access, but they are
like arrays in that they are nonoptimized for inserting and deleting information. Sorting data on
magnetic tape drives is called external sorting and requires algorithms different from those
described here.

288

Inside Microsoft SQL Server 2008: T-SQL Querying

Quadratic Sorting Algorithms

When you arrange a handful of playing cards or alphabetize a few dozen folders in a file cabinet,
you're probably applying a quadratic sorting algorithm like insertion sort or selection sort.

Insertion sort To sort a list of items with insertion sort, begin with the second item. If it
belongs before the first item, exchange it with the first item. Then look at the third item and
move it up zero, one, or two slots so that the first three items are in order. Look at the fourth
item and move it up zero, one, two, or three slots so the first four items are in order. Proceed
in this manner until you have looked at the last item and moved it into the correct place.

If insertion sort is used for an array and newly considered items must frequently be moved
many slots up, a great deal of data movement may be needed.

Insertion sort has worst-case complexity O(n?). On the other hand, if the data is already in
order (and, trust me, this often happens), insertion sort is linear. Insertion sort is relatively
easy to implement correctly, and when n is small, it's a good choice.

Selection sort Selection sort resembles insertion sort, but it's better than insertion sort for
data in an array because data is swapped into position instead of squeezed into position.

To sort a list of items with selection sort, first scan the items to find the one that should be
placed first. Swap that item with the first item. Then scan items 2 through n to find the one
belonging first (of those n-1 items). Swap it with the second item. Continue in this manner
until you have scanned the final two items, found which one goes before the other, and
swapped them if needed.

An important aspect of these sorts is that you can be specific about what is true if you quit
before you finish the process. If you carry out insertion sort only through the 10th item, you
can be sure that the first 10 items are in order. They may not, however, be the 10 items that
ultimately belong in the first 10 positions. If you quit selection sort after the 10th item, you
can be sure that the first 10 items are in order and that they are the 10 items that ultimately
belong in the first 10 positions. If you think about the sorts this way, you might conclude
that selection sort is better. However, if you think about it, you'll realize that handling each
successive item in insertion sort gets more difficult and that handling each successive item in
selection sort gets less difficult. If there are many items, it will take you longer to handle the
first 10 with selection sort. It's no surprise, then, that you get more accomplished.

O(n log n) Sorting Algorithms

The two most commonly used sorting algorithms have complexity O(n log n). Both of them
rely on a valuable strategy for solving large problems: divide and conquer, and they are most
easily implemented using recursion.

Merge sort It's easy to describe merge sort, though you wouldn't likely use it to sort
cards or files by hand. To sort the items in a list or array with merge sort, first check to see
if you have only one item. If so, you're done sorting! Otherwise, see if you have only two
items. If so, compare the two items and swap them if necessary. Otherwise, you have more

Chapter 5 Algorithms and Complexity 289

than two items to sort, and you must do three things: sort the first half of the items (using
merge sort), sort the second half of the items, and merge the two (now sorted) halves into
a single list that is in order. Merging two sorted lists to obtain a single sorted list takes only
O(n) time when there are a total of n items. However, each item participates in roughly log
n merge operations, so the complexity of the entire sorting algorithm is O(n log n). Merge
sort is reliably fast because its best-case, worst-case, and average-case complexities are all
the same. The downside of merge sort is that simple implementations require space for the
merge operation.

Quick sort Quick sort, like merge sort, is easiest to describe and implement recursively.
Here's how it works: To sort the items in a list or array with quick sort, begin by setting aside
the first item of the list. Its value is called the pivot. Then divide the remaining items from
the second item to the last item into two separate lists—one to the left of the pivot item
and containing the items that come before the pivot and the other to the right of the pivot
item and containing items that come after the pivot value. Then sort each of these two lists
(using quick sort). That’s it. One advantage to quick sort is that it can easily be implemented
with very modest space requirements. On the other hand, it has a worst-case complexity of
O(n?), which ironically occurs when the list is already sorted! Fortunately, if the algorithm is
modified slightly, and the pivot item is chosen at random, the worst-case scenario is not the
already-sorted scenario, and quick sort is very unlikely to be slow.

Faster Sorting Algorithms

Comparison-based swapping sorts are sorts that rearrange elements only by swapping,

and the decision to swap or not swap elements is made by comparing the elements.
Comparison-based swapping sorts cannot have complexity better than O(n log n). However,
there are other ways to sort items.

Ultra sort Ultra sort requires a staging area that will receive the data as it's scanned, and
the preparation of the staging area depends on the type of data to be sorted. Suppose
you're sorting numbers from 1 to 1,000. First allocate and initialize to zero an array A
containing 1,000 items: A[1], A[2], through A[1000]. This setup takes O(1) time. Now scan
the data to be sorted. When you encounter a 17, increment the value of A[17]. When you
encounter a 36, increment A[36], and so on. When you've gone through the entire list, you
have an array A that recorded the number of 1s, of 2s, and so on in your original list. To
return the original list in sorted order, step through the array A. When you get to A[63], for
example, and find that it equals 3, return 63 to the user 3 times. Then go to A[64]. This sort
required O(n) time and O(1) space. Unfortunately, if you were sorting integers, the size of
your O(1) space would be about 16 billion bytes, and while 16 billion is technically O(1), it's
the dominant term, and quick sort or merge sort will probably be an improvement.

String Searching

Another common data processing task is to find a string within a longer string, for example,
to find a particular word in a word processing document. If | want to find the word particular
in the previous sentence, how long does it take?

290 Inside Microsoft SQL Server 2008: T-SQL Querying

Not long, if mean | want to find it “as a word” and not as consecutive letters ignoring
spaces, for example. However, suppose | want to find a particular computer virus signature
on my hard drive. Is there a quick way to do it?

Searching for a Virus Signature in a Gigabyte BLOB

Suppose 0x0001000100010001000100010001000100010001 is a dangerous virus
signature and you need to find it if it exists as a substring of gigabyte BLOB (Binary Large
Object). Surprisingly, there is an algorithm to search for it that will inspect considerably
fewer than all the bytes of the BLOB. Here is the procedure:

Algorithm to search for 0x0001000100010001000100010001000100010001

1. Inspect the 20th byte of the BLOB, which would be the last byte of the signature
if the signature appeared at the beginning of the BLOB. If the 20th byte is not
0x00 or 0x01, the virus signature cannot begin at any one of the first 20 bytes of
the BLOB. As a result, the leftmost position where the virus signature can begin
is the 21st byte.

2. Inspect the 40th byte, which is where the virus signature would end if it began at
the 21st byte. If that byte is not 0x00 or 0x01, proceed to the next step.

3. Inspect the 60th byte and so on.

Once in a while, you will inspect a byte that is 0x00 or 0x01, and you'll have to follow
different rules that don't let you jump ahead by 20 bytes, but you can still rule out
many starting points if the byte you inspect is preceded closely by a byte that isn't
0x00 or 0x01. It's quite likely that you have to inspect only one or two bytes out of
every 20 in your BLOB, and you'll often determine that the virus signature is absent
after inspecting only 5 to 10 percent of the BLOB bytes.

This clever algorithm was described by Boyer and Moore in 1977 and provides an
example of a sublinear complexity algorithm that requires no preorganization of the data.

A Practical Application

In the final section of this chapter, I'll describe a real-world process control problem

| encountered about 10 years ago and was able to solve with an efficient algorithm that had
only recently been published in a mathematics journal. This real-world problem concerns the
identification of a trend marker in a series of measurements of toxin levels. In the following
description, I've simplified the scenario but not the algorithm, which eventually received
governmental certification and was used for environmental monitoring.

Chapter 5 Algorithms and Complexity 291

Identifying Trends in Measurement Data

The ongoing debate about global warming underlines the fact that there is no simple
criterion for identifying an increasing trend in a series of measurements. Many industries use
statistical process control (SPC) software to identify trends, and these software programs can
be configured to identify many different kinds of patterns called trend markers in a series

of measurements. A simple trend marker is a record high measurement: a measurement
higher than any previously recorded value. Another trend marker is the occurrence of seven
consecutive above-average measurements. Yet another is the occurrence of two consecutive
measurements at or above the 98th percentile of all previous measurements. A number of
commercial SPC programs include these trend markers.

Increasing Subsequences

One useful trend marker not typically included in commercial software packages is an increasing
subsequence of a particular length. Here's an example of a sequence of measurements that
includes a length-four increasing subsequence. The four numbers in bold form an increasing
subsequence—increasing because they increase from left to right and subsequence because
the values come from the original sequence.

3.894, 4.184, 3.939, 4.050, 3.940, 4.140, 3.914, 4.156, 4.143, 4.035, 4.097

The subsequence identified in bold isn't the only increasing subsequence of length four, nor
is it the longest increasing subsequence in the original sequence.

The problem we'll solve in T-SQL is that of finding the length of the longest increasing
subsequence.

Longest Increasing Subsequence Length Problem (LISLP)

Input: A sequence X of n numbers: x;, X5, ..., X,,.

Output: The largest integer k for which there is a length-k increasing subsequence of X.

The Algorithmic Complexity of LISLP

One way to solve this problem is to enumerate all the subsequences of X and check each

one to see if its values form an increasing sequence. If X is a very short sequence, this works
reasonably well. For example, if X contains 6 elements, there are only 57 subsequences of
length at least two. (Note that a subsequence can't really be increasing if it doesn't contain at
least two items.)

292

Inside Microsoft SQL Server 2008: T-SQL Querying

How Many Subsequences Are There?

Unfortunately, the number of subsequences of X grows exponentially with the length of X. If

X contains not six but 26 elements, there are more than 67 million subsequences. If X contains
60 elements, there are more than a billion billion. A billion billion nanoseconds is about

31 years. Don't try enumerating this many subsequences at home! If the sequence X contains n
items, there’s a subsequence of X for every subset of the set of item positions {1, 2, 3, ..., n}, or
2" subsequences in all. There are n one-item subsequences and one zero-item subsequence,
leaving us with 2" - (n+1) subsequences of length at least two. Although in practice you might
not need to consider all these subsequences—for example, as soon as you find one increasing
subsequence, you can skip all the unchecked subsequences of the same length—enumerating
subsequences is not the way to solve LISLP.

An Algorithm for LISLP with ©(n log n) Complexity

The algorithmic complexity of enumerating all subsequences of a length-n sequence is ©(27),
which, as we've seen, makes the problem impossible to solve in practice for inputs of even
modest size. Fortunately, not long before | encountered this problem, so had two talented
mathematics, David Aldous and Persi Diaconis. Better yet, they had published their findings in
the Bulletin of the American Mathematical Society in 1999: “Longest increasing subsequences:
from patience sorting to the Baik-Deift-Johansson theorem.” Aldous and Diaconis described
an O(n log n) algorithm to solve the problem.

Algorithms with O(n log n) complexity are practical to use, but it helps if they are also simple
to implement. This one turns out to be.

Finding the Length of the Longest Increasing Subsequence

Let X = (x;, X5, ..., X,) be a sequence of n real numbers. The length of the longest increasing
subsequence of X is the length of the list L generated by the following procedure.

1. Let k=1, and let L be an empty list of numbers.

2. Whilek < n:

3. Inspect L for numbers greater than or equal to a,. If one exists, replace the first (and
smallest) of them with a,. Otherwise (when a, is greater than every number in L), insert
a, into the list L. Increase k by 1.

Solving the Longest Increasing Subsequence
Length Problem in T-SQL

Execute the code in Listing 5-1 to create the tables Locations and Readings and fill them with
sample data.

Chapter 5 Algorithms and Complexity 293

LISTING 5-1 Creating and populating the Locations and Readings tables

USE tempdb;

GO

IF OBJECT_ID('dbo.Locations') IS NOT NULL
DROP TABLE dbo.Locations;

CREATE TABLE dbo.Locations (
ID INT NOT NULL PRIMARY KEY,
name VARCHAR(12) NOT NULL

DE

INSERT INTO dbo.Locations VALUES (1, 'Uptown'), (2, 'Midtown');

IF OBJECT_ID('dbo.Readings') IS NOT NULL
DROP TABLE dbo.Readings;

CREATE TABLE dbo.Readings (
TocID INT REFERENCES dbo.Locations(ID),
readingNum INT,
ppb DECIMAL(6,3),
PRIMARY KEY (TocID,readingNum)
)5

INSERT INTO dbo.Readings VALUES
(1,1,3.968), (1,2,3.773), (1,3,3.994), (1,4,3.889),
(1,5,4.015), (1,6,4.002), (1,7,4.043), (1,8,3.932),
(1,9,4.072), (1,10,4.088), (1,11,3.952), (1,12,3.992),
(1,13,3.980), (1,14,4.062), (1,15,4.074), (2,1,3.894),
(2,2,4.184), (2,3,3.939), (2,4,4.050), (2,5,3.940),
(2,6,4.140), (2,7,3.914), (2,8,4.156), (2,9,4.143),
(2,10,4.035), (2,11,4.097), (2,12,4.086), (2,13,4.093),
(2,14,3.932), (2,15,4.046);

GO

The pseudocode described how to implement the algorithm for a single sequence X, and the
Readings table contains two sequences of readings, one for each of two locations. Therefore,
with the code in Listing 5-2, we'll create a user-defined function dbo.LISL that returns the
longest increasing subsequence length for a single sequence, given a location ID as input.

LISTING 5-2 Code to create the user-defined function L/SL

IF OBJECT_ID('dbo.LISL') IS NOT NULL DROP FUNCTION dbo.LISL;

CREATE FUNCTION dbo.LISL(@TocID INT)
RETURNS INT AS BEGIN

DECLARE @Solitaire TABLE (
pos int IDENTITY(1,1) PRIMARY KEY,
ppb decimal(6,3),
UNIQUE (ppb,pos)

)5

294

Inside Microsoft SQL Server 2008: T-SQL Querying

DECLARE C CURSOR FAST_FORWARD
FOR

SELECT ppb

FROM dbo.Readings

WHERE TocID = @locID

ORDER BY readingNum;

DECLARE @ppb decimal(6,3);

OPEN C;
FETCH NEXT FROM C INTO @ppb;
IF @@fetch_status <> 0 RETURN O0;

INSERT INTO @Solitaire VALUES (@ppb);
WHILE @@fetch_status = 0 BEGIN

WITH T(pos) AS (
SELECT MIN(pos)
FROM @Solitaire
WHERE ppb >= @ppb
)
MERGE INTO @Solitaire AS S
USING T
ON T.pos = S.pos
WHEN MATCHED THEN
UPDATE SET ppb = @ppb
WHEN NOT MATCHED BY TARGET THEN
INSERT (ppb) VALUES (@ppb);

FETCH NEXT FROM C INTO @ppb;

END;
CLOSE C;
DEALLOCATE C;

RETURN (SELECT COUNT(*) FROM @Solitaire);
END;
Go

Listing 5-2 includes a MERGE statement, which is a new feature of SQL Server 2008. You'll
learn about MERGE in detail in Chapter 10, “Data Modification.” Otherwise, there’s not much
to explain in the listing, which follows the pseudocode closely. | will point out that I've given
the name @Solitaire to the table that represents L because Diaconis and Aldous describe
the algorithm for LISLP in terms of a game of Solitaire (which is known as Patience in some
English-speaking countries).

Finally, let's use this function (shown in Listing 5-3) to solve LISLP for our sample data.

Chapter 5 Algorithms and Complexity 295
LISTING 5-3 Query to find the longest increasing subsequence length

SELECT
name, dbo.LISL(ID) AS LISL
FROM dbo.Locations;

This query returns the following results:

name LISL
Uptown 7
Midtown 6

Can you find increasing subsequences of length 7 and 6 for the Uptown and Midtown data,
respectively? And can you convince yourself that these are the longest?

Conclusion

This chapter surveyed some key concepts about algorithms and complexity. A close look at
complexity dispelled the idea that the answer to every problem is better hardware! After
briefly surveying a few algorithms that are particularly important to the SQL Server engine,
the chapter ended with a practical example.

Chapter 6
Subqueries, Table Expressions,
and Ranking Functions

This chapter covers subqueries, which are queries within queries, and ranking calculations.
Subqueries can be scalar, multivalued, or table valued. You can use a scalar subquery where a
single value is expected. For example, the following query returns the order with the maximum
order ID:

USE InsideTSQL2008;

SELECT orderid, custid
FROM Sales.Orders
WHERE orderid = (SELECT MAX(orderid) FROM Sales.Orders);

The scalar subquery in bold is in charge of returning the maximum order ID. This subquery is
self-contained, meaning that it has no dependency on the outer query.

A subquery that has a dependency on the outer query is known as a correlated subquery. For
example, the following query returns the order with the maximum order ID for each customer:

SELECT orderid, custid

FROM Sales.Orders AS 01

WHERE orderid = (SELECT MAX(02.orderid)
FROM Sales.Orders AS 02
WHERE 02.custid = Ol.custid);

The correlated subquery in bold is in charge of returning the maximum order ID for the
current customer in the outer table.

You can use a multivalued subquery where multiple values are expected. For example, the
following query returns customers who placed orders:

SELECT custid, companyname
FROM Sales.Customers
WHERE custid IN (SELECT custid FROM Sales.Orders);

The multivalued subquery in bold is in charge of returning customer IDs of customers who
placed orders. Like scalar subqueries, multivalued subqueries can be correlated.

You can use a table-valued subquery, or table expression, where a table is expected. For
example, the following query returns the maximum order ID for each order year:

SELECT orderyear, MAX(orderid) AS max_orderid
FROM (SELECT orderid, YEAR(orderdate) AS orderyear
FROM Sales.Orders) AS D

GROUP BY orderyear;
297

298

Inside Microsoft SQL Server 2008: T-SQL Querying

The table expression D in bold assigns the alias orderyear to the expression YEAR(orderdate)
and returns the order ID and order year for each order.

I'll refer to scalar and multivalued subqueries just as subqueries and to subqueries that are
used where a table is expected as table expressions. In this chapter, I'll cover two kinds of
table expressions: derived tables and common table expressions (CTE).

In the last part of the chapter, I'll cover ranking functions, including row number, rank, dense
rank, and tile.

Because this book is intended for experienced programmers, | assume that you're already
familiar with subqueries and table expressions. I'll go over their definitions briefly and focus
on their applications and on problem solving.

Subqueries

Subqueries can be characterized in two main ways. One is by the expected number of values
(either scalar or multivalued), and another is by the subquery’s dependency on the outer
query (either self-contained or correlated). Both scalar and multivalued subqueries can be
either self-contained or correlated.

Self-Contained Subqueries

As mentioned, a self-contained subquery is a subquery that can be run independently of the
outer query. Self-contained subqueries are very convenient to debug, of course, compared to
correlated subqueries.

Scalar subqueries can appear anywhere in the query where an expression resulting in a scalar
value is expected, while multivalued subqueries can appear anywhere in the query where
a collection of multiple values is expected.

A scalar subquery is valid when it returns a single value and also when it returns no values—
in which case, the value of the subquery is NULL. However, if a scalar subquery returns
more than one value, a run-time error will occur.

For example, run the following code three times: once as shown, a second time with LIKE
N’Kollar’in place of LIKE N'Davis’, and a third time with LIKE N'D%:

SELECT orderid FROM Sales.Orders

WHERE empid =
(SELECT empid FROM HR.EmpTloyees
-- also try with N'Kollar' and N'D%'
WHERE Tastname LIKE N'Davis');

With N’Davis’, the subquery returns a single value (1) and the outer query returns all orders
with employee ID 1.

Chapter 6 Subqueries, Table Expressions, and Ranking Functions 299

With N'Kollar’, the subquery returns no values and is therefore NULL. The outer query obviously
doesn't find any orders for which empid = NULL and therefore returns an empty set. Note that
the query doesn't break (fail)—it's a valid query.

With N'D%’, the subquery returns two values (1, 9), and because the outer query expects a
scalar, it breaks at run time and generates the following error:

Msg 512, Level 16, State 1, Line 1
Subquery returned more than 1 value. This is not permitted when the subquery follows =,
=, <, <=, >, >= or when the subquery is used as an expression.

Logically, a self-contained subquery can be evaluated just once for the whole outer query.
Physically, the optimizer can consider many different ways to achieve the same thing, so you
shouldn’t think in such strict terms.

Now that we've covered the essentials, let's move on to more sophisticated problems involving
self-contained subqueries.

I'll start with a problem belonging to a group of problems called relational division. Relational
division problems have many nuances and many practical applications. Logically, it's like
dividing one set by another, producing a result set. For example, from the InsideTSQL2008
database, return all customers for whom every employee from the USA has handled at least
one order. In this case, you're dividing the set of all orders by the set of all employees from
the USA, and you expect the set of matching customers back. Filtering here is not that simple
because for each customer you need to inspect multiple rows to figure out whether you have
a match.

Here I'll show a technique using GROUP BY and DISTINCT COUNT to solve relational division
problems. I'll show you other techniques later in the book.

If you knew ahead of time the list of all employee IDs for USA employees, you could write the
following query to solve the problem:

SELECT custid

FROM Sales.Orders

WHERE empid INC1, 2, 3, 4, 8)
GROUP BY custid

HAVING COUNT(DISTINCT empid) = 5;

This query generates the following output:

custid

300

Inside Microsoft SQL Server 2008: T-SQL Querying

39
41
46
47
48
51
55
63
65
71
80
83
84
87
89

This query finds all orders with one of the five U.S. employee IDs, groups those orders by custid,
and returns customer IDs that have (all) five distinct empid values in their group of orders.

To make the solution more dynamic and accommodate lists of employee IDs that are
unknown ahead of time and also large lists even when known, you can use subqueries
instead of literals:

SELECT custid

FROM Sales.Orders

WHERE empid IN
(SELECT empid FROM HR.EmpTloyees
WHERE country = N'USA")

GROUP BY custid

HAVING COUNT(DISTINCT empid) =
(SELECT COUNT(*) FROM HR.Employees
WHERE country = N'USA');

Another problem involving self-contained subqueries is returning all orders placed on the
last actual order date of the month. Note that the last actual order date of the month might
be different than the last date of the month—for example, if a company doesn’t place orders
on weekends. So the last actual order date of the month has to be queried from the data.
Here's the solution query:

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate IN
(SELECT MAX(orderdate)
FROM Sales.Orders
GROUP BY YEAR(orderdate), MONTH(orderdate));

This query produces the following output:

orderid custid empid orderdate

10269 89 5 2006-07-31 00:00:00.000
10294 65 4 2006-08-30 00:00:00.000

10317
10343
10368
10399
10432
10460
10461
10490
10491
10522
10553
10554
10583
10584
10616
10617
10650
10686
10687
10725
10758
10759
10806
10807
10861
10862
10914
10915
10916
10987
10988
10989
11060
11061
11062
11063
11074
11075
11076
11077

48
44
20
83
75
24
46
35
28
44
87
56
87
7

32
32
21
59
37
21
68
2

84
27
89
44
62
80
64
19
65
61
27
32
66
37
73
68
9

65

P O NWDARBAEANNWORNOOORADRAWWWRARONURARREDRDMNRENDRDOGONREOWOWWOGLBND™OO

Chapter 6 Subqueries, Table Expressions, and Ranking Functions

2006-09-30
2006-10-31
2006-11-29
2006-12-31
2007-01-31
2007-02-28
2007-02-28
2007-03-31
2007-03-31
2007-04-30
2007-05-30
2007-05-30
2007-06-30
2007-06-30
2007-07-31
2007-07-31
2007-08-29
2007-09-30
2007-09-30
2007-10-31
2007-11-28
2007-11-28
2007-12-31
2007-12-31
2008-01-30
2008-01-30
2008-02-27
2008-02-27
2008-02-27
2008-03-31
2008-03-31
2008-03-31
2008-04-30
2008-04-30
2008-04-30
2008-04-30
2008-05-06
2008-05-06
2008-05-06
2008-05-06

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

301

The self-contained subquery returns the following list of values representing the last actual

order date of each month:

2007-01-31
2008-01-30
2007-02-28
2008-02-27
2007-03-31
2008-03-31
2007-04-30
2008-04-30
2007-05-30
2008-05-06
2007-06-30

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.

000
000
000
000
000
000
000
000
000
000
000

302

Inside Microsoft SQL Server 2008: T-SQL Querying

2006-07-31 00:00:00.000
2007-07-31 00:00:00.000
2006-08-30 00:00:00.000
2007-08-29 00:00:00.000
2006-09-30 00:00:00.000
2007-09-30 00:00:00.000
2006-10-31 00:00:00.000
2007-10-31 00:00:00.000
2006-11-29 00:00:00.000
2007-11-28 00:00:00.000
2006-12-31 00:00:00.000
2007-12-31 00:00:00.000

The subquery achieves this result by grouping the orders by order year and month and
returning the MAX(orderdate) for each group. The outer query returns all orders with an
orderdate that appears in the list returned by the subquery.

Correlated Subqueries

Correlated subqueries are subqueries that have references to columns from the outer query.
Logically, the subquery is evaluated once for each row of the outer query. Again, physically,
it's a much more dynamic process and varies from case to case, with no single physical way
to process a correlated subquery.

Isolating One Row Per Group and Applying a Tiebreaker

I'll start dealing with correlated subqueries through a problem that introduces a very
important concept in SQL querying—a tiebreaker. I'll refer to this concept throughout the
book. A tiebreaker is an attribute or attribute list that allows you to uniquely rank elements.
For example, suppose you need the most recent order for each employee. You are supposed
to return only one order for each employee, but the attributes empid and orderdate do not
necessarily identify a unique order. You need to introduce a tiebreaker to be able to identify
a unique most recent order for each employee. For example, out of the multiple orders

with the maximum orderdate for an employee, you could decide to return the one with the
maximum orderid. In this case, MAX(orderid) is your tiebreaker. Or you could decide to return
the row with the maximum requireddate and, if you still have multiple rows, return the one
with the maximum orderid. In this case, your tiebreaker is MAX(requireddate), MAX(orderid).
A tiebreaker is not necessarily limited to a single attribute.

Before moving on to the solutions, run the following code to create indexes that support the
physical processing of the queries that will follow:

CREATE UNIQUE INDEX idx_eid_od_oid
ON Sales.Orders(empid, orderdate, orderid);
CREATE UNIQUE INDEX idx_eid_od_rd_oid
ON Sales.Orders(empid, orderdate, requireddate, orderid);

Chapter 6 Subqueries, Table Expressions, and Ranking Functions 303

I'll explain the indexing guidelines after presenting the solution queries.

Let's start with the basic request to return the orders with the maximum orderdate for each
employee. Here you can get multiple rows for each employee because an employee can have
multiple orders with the same order date.

You might be tempted to use the following solution, which includes a self-contained subquery
similar to the one used to return orders on the last actual order date of the month:

SELECT orderid, custid, empid, orderdate, requireddate
FROM Sales.Orders
WHERE orderdate IN

(SELECT MAX(orderdate) FROM Sales.Orders

GROUP BY empid);

However, this solution is incorrect. The result set includes the correct orders (the ones with
the maximum orderdate for each employee). But you also get any order for employee A with
an orderdate that happens to be the maximum for employee B, even though it's not also the
maximum for employee A. This wasn’t an issue with the previous problem because an order
date in month A can’t be equal to the maximum order date of a different month B.

In our case, the subquery must be correlated to the outer query, matching the inner empid to
the one in the outer row:

SELECT orderid, custid, empid, orderdate, requireddate
FROM Sales.Orders AS 01
WHERE orderdate =

(SELECT MAX(orderdate)

FROM Sales.Orders AS 02

WHERE 02.empid = Ol.empid);

This query generates the correct results, as the following output shows:

orderid custid empid orderdate requireddate

11077 65 1 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000
11070 44 2 2008-05-05 00:00:00.000 2008-06-02 00:00:00.000
11073 58 2 2008-05-05 00:00:00.000 2008-06-02 00:00:00.000
11063 37 3 2008-04-30 00:00:00.000 2008-05-28 00:00:00.000
11076 9 4 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000
11043 74 5 2008-04-22 00:00:00.000 2008-05-20 00:00:00.000
11045 10 6 2008-04-23 00:00:00.000 2008-05-21 00:00:00.000
11074 73 7 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000
11075 68 8 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000
11058 6 9 2008-04-29 00:00:00.000 2008-05-27 00:00:00.000

The output contains one example of multiple orders for an employee, in the case of
employee 2. If you want to return only one row for each employee, you have to introduce
a tiebreaker. For example, out of the multiple rows with the maximum orderdate, return the
one with the maximum orderid. You can achieve this by adding another subquery that keeps

304

Inside Microsoft SQL Server 2008: T-SQL Querying

the order only if orderid is equal to the maximum among the orders with the same empid
and orderdate as in the outer row:

SELECT orderid, custid, empid, orderdate, requireddate
FROM Sales.Orders AS 01
WHERE orderdate =
(SELECT MAX(orderdate)
FROM Sales.Orders AS 02
WHERE 02.empid = Ol.empid)
AND orderid =
(SELECT MAX(orderid)
FROM Sales.Orders AS 02
WHERE 02.empid = Ol.empid
AND 02.orderdate = Ol.orderdate);

Of the two orders for employee 2, only the one with the maximum orderid remains, as the
following output shows:

orderid custid empid orderdate requireddate

11077 65 1 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000
11073 58 2 2008-05-05 00:00:00.000 2008-06-02 00:00:00.000
11063 37 3 2008-04-30 00:00:00.000 2008-05-28 00:00:00.000
11076 9 4 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000
11043 74 5 2008-04-22 00:00:00.000 2008-05-20 00:00:00.000
11045 10 6 2008-04-23 00:00:00.000 2008-05-21 00:00:00.000
11074 73 7 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000
11075 68 8 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000
11058 6 9 2008-04-29 00:00:00.000 2008-05-27 00:00:00.000

Instead of using two separate subqueries for the sort column (orderdate) and the tiebreaker
(orderid), you can use nested subqueries:

SELECT orderid, custid, empid, orderdate, requireddate
FROM Sales.Orders AS 01
WHERE orderid =
(SELECT MAX(orderid)
FROM Sales.Orders AS 02
WHERE 02.empid = Ol.empid
AND 02.orderdate =
(SELECT MAX(orderdate)
FROM Sales.Orders AS 03
WHERE 03.empid = Ol.empid));

| compared the performance of the two and found it very similar. | find the nested approach
more complex, so as long as there's no compelling performance benefit, I'd rather stick to
the simpler approach. Simpler is easier to understand and maintain, and therefore less prone
to errors.

Going back to the simpler approach, for each tiebreaker attribute you have, you need to
add a subquery. Each such subquery must be correlated by the group column, sort column,

Chapter 6 Subqueries, Table Expressions, and Ranking Functions 305

and all preceding tiebreaker attributes. So, to use MAX(requireddate), MAX(orderid) as the
tiebreaker, you would write the following query:

SELECT orderid, custid, empid, orderdate, requireddate
FROM Sales.Orders AS 01
WHERE orderdate =
(SELECT MAX(orderdate)
FROM Sales.Orders AS 02
WHERE 02.empid = Ol.empid)
AND requireddate =
(SELECT MAX(requireddate)
FROM Sales.Orders AS 02
WHERE 02.empid = Ol.empid
AND 02.orderdate = Ol.orderdate)
AND orderid =
(SELECT MAX(orderid)
FROM Sales.Orders AS 02
WHERE 02.empid = Ol.empid
AND 02.orderdate = Ol.orderdate
AND 02.requireddate = Ol.requireddate);

The indexing guideline for the preceding tiebreaker queries is to create an index on (group_cols,
sort_cols, tiebreaker_cols). For example, when the tiebreaker is MAX(orderid), you want an index
on (empid, orderdate, orderid). When the tiebreaker is MAX(requireddate), MAX(orderid), you
want an index on (empid, orderdate, requireddate, orderid). Such an index would allow retrieving
the relevant sort value or tiebreaker value for an employee using a seek operation within

the index.

When you're done testing the tiebreaker solutions, run the following code to drop the indexes
that were created just for these examples:

DROP INDEX Sales.Orders.idx_eid_od_oid;
DROP INDEX Sales.Orders.idx_eid_od_rd_oid;

| presented here only one approach using ANSI-correlated subqueries to solving the problem
of isolating one row per group using a tiebreaker. This approach is neither the most efficient
nor the simplest. You will find other solutions to tiebreaker problems in Chapter 8, “Aggregating
and Pivoting Data,” in the "Tiebreakers” section, and in Chapter 9, “TOP and APPLY,” in the

“TOP n for Each Group” section.

EXISTS

EXISTS is a powerful predicate that allows you to efficiently check whether any rows result from

a given query. The input to EXISTS is a subquery, which is typically but not necessarily correlated,
and the predicate returns TRUE or FALSE, depending on whether the subquery returns at least one
row or none. Unlike other predicates and logical expressions, EXISTS cannot return UNKNOWN.
Either the input subquery returns rows or it doesn't. If the subquery’s filter returns UNKNOWN for
a certain row, the row is not returned. Remember that in a filter, UNKNOWN is treated like FALSE.

306

Inside Microsoft SQL Server 2008: T-SQL Querying

In other words, when the input subquery has a filter, EXISTS will return TRUE only if the filter is
TRUE for at least one row. The reason I'm stressing this subtle point will become apparent shortly.

First, let's look at an example that will demonstrate the use of EXISTS. The following query
returns all customers from Spain who made orders:

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE country = N'Spain'
AND EXISTS
(SELECT * FROM Sales.Orders AS O
WHERE O.custid = C.custid);

This query generates the following output:

custid companyname

8 Customer QUHWH
29 Customer MDLWA
30 Customer KSLQF
69 Customer SIUIH

The outer query returns customers from Spain for whom the EXISTS predicate finds at least
one order row in the Orders table with the same custid as in the outer customer row.

Tip The use of the asterisk (*) here is perfectly safe, even though in general it's not a good
practice. The optimizer ignores the SELECT list specified in the subquery because EXISTS cares
only about the existence of rows and not about any specific attributes. Some resolution overhead
may be involved in expanding the * to check column permissions, but this cost is likely so
negligible that you will hardly ever notice it.

Examine the execution plan produced for this query, as shown in Figure 6-1.

= tc] 5]
Mested Loops Clustered Index Scan
(Left Semi Join) [Customers]. [PK_Customer..
Cost: 1 % Cost: 53 %
A
Index Seek
lOorders]. [idx_nc_custid]
Cost: 46 %

FIGURE 6-1 Execution plan for an EXISTS query

The plan scans the Customers table and filters customers from Spain. For each matching
customer, the plan performs a seek within the index on Orders.custid to check whether the
Orders table contains an order with that customer’s custid. The index on the filtered column
in the subquery (Orders.custid in our case) is very helpful here because it provides direct
access to the rows of the Orders table with a given custid value.

Chapter 6 Subqueries, Table Expressions, and Ranking Functions 307

EXISTS vs. IN Programmers frequently wonder whether a query with the EXISTS predicate
is more efficient than a logically equivalent query with the IN predicate. For example, the last
query could be written using an IN predicate with a self-contained subquery as follows:

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE country = N'Spain'
AND custid IN(SELECT custid FROM Sales.Orders);

The optimizer often generates identical plans for two queries when they are truly logically
equivalent, and this case qualifies. The plan generated for the last query using IN is identical
to the one shown in Figure 6-1, which was generated for the query using EXISTS.

If you're always thinking of the implications of three-valued logic, you might see the difference
between IN and EXISTS. Unlike EXISTS, IN can in fact produce an UNKNOWN logical result when
the input list contains a NULL. For example, a IN(b, ¢, NULL) is UNKNOWN. However, because
UNKNOWN is treated like FALSE in a filter, the result of a query with the IN predicate is the same
as with the EXISTS predicate, and the optimizer is aware of that, hence the identical plans.

NOT EXISTS vs. NOT IN The logical difference between EXISTS and IN does show up if we
compare NOT EXISTS and NOT IN, when the input list of NOT IN might contain a NULL.

For example, suppose you need to return customers from Spain who made no orders. Here’s
the solution using the NOT EXISTS predicate:

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE country = N'Spain'
AND NOT EXISTS
(SELECT * FROM Sales.Orders AS O
WHERE O.custid = C.custid);

This query generates the following output:
22 Customer DTDMN

Even if the Orders table has a NULL custid, it is of no concern to us. You get all customers
from Spain for which SQL Server cannot find even one row in the Orders table with the same
custid. The plan generated for this query is shown in Figure 6-2.

= tc] (2
Mested Loops Clustered Index Scan (C1..
{Left Anti Semi loin) [Customers]. [PK_Customer..
Cost: 1 % Cost: 53 %
¥4
= %
Top Index Seek (MonClustered)

lOrders]. [idx_nc_custid]

Cost: 0% Cost: 46 %

FIGURE 6-2 Execution plan for a NOT EXISTS query

308

Inside Microsoft SQL Server 2008: T-SQL Querying

The plan scans the Customers table and filters customers from Spain. For each matching customer,
the plan performs a seek within the index on Orders.custid. The Top operator appears because

it's only necessary to see whether you have at least one matching order for the customer—that’s
the short-circuiting capability of EXISTS in action. This use of Top is particularly efficient when the
Orders.custid column has a high density (that is, a large number of duplicates). The seek takes
place only once for each customer, and regardless of the number of orders the customer has, only
one row is scanned at the leaf level (the bottom level of the index) to look for a match, as opposed
to all matching rows.

In this case, the following solution using the NOT IN predicate does yield the same output. It
seems to have the same meaning, but we'll see later that it does not.

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE country = N'Spain'
AND custid NOT IN(SELECT custid FROM Sales.Orders);

If you examine the execution plan, shown in Figure 6-3, you will find that it's different from
the one generated for the NOT EXISTS query.

- tc] 27
Mested Loops Clustered Index Scan (C1..
(Left Anti Semi Join) [Customers]. [FE_Customer..
Cost: 1 % Cost: 52 %
icl =) =
Nested Loops = Sort o
. Merge Interwval Compute Scalar
[Inner Join) Cost: D % {Top N Sort) Cost: O %
Cost: O % ’ Cost: 0% ’

s = 1 M

Index Seek (NonClustered) Concatenatson Compute Scalar Constant Scan
[Orders]. [1dx_nc_custid] Cost: 0 % Cost: 0% Cost: 0 %
Cost: 48 %

= M

Compute Scalar Constant Scan
Cost: 0% Cost: O %

FIGURE 6-3 Execution plan for a NOT IN query

The beginning of this plan has some additional operations compared to the previous plan—
steps needed to look for NULL custids. Why is this plan different than the one generated for
the NOT EXISTS query? And why would SQL Server care particularly about the existence of
NULLs in Orders.custid?

The discrepancy between the plans doesn't affect the result because no row in the Orders
table has a NULL custid. However, because the custid column allows NULLs, the optimizer
must take this fact into consideration. Let's see what happens if we add a row with a NULL
custid to the Orders table:

Chapter 6 Subqueries, Table Expressions, and Ranking Functions 309

INSERT INTO Sales.Orders
(custid, empid, orderdate, requireddate, shippeddate, shipperid,
freight, shipname, shipaddress, shipcity, shipregion,
shippostalcode, shipcountry)
VALUES(NULL, 1, '20090212', '20090212',
'20090212', 1, 123.00, N'abc', N'abc', N'abc',
N'abc', N'abc', N'abc');
Now rerun both the NOT EXISTS and NOT IN queries. You will find that the NOT EXISTS
query still returns the same output as before, while the NOT IN query now returns an empty
set. In fact, when the Orders.custid column has a NULL, the NOT IN query always returns an
empty set. This is because the predicate val IN(vall, val2, ..., NULL) can never return FALSE;
rather, it can return only TRUE or UNKNOWN. As a result, val NOT IN(vall, val2, ..., NULL)
can return only NOT TRUE or NOT UNKNOWN, neither of which is TRUE.

For example, suppose the customer list in this query is (a, b, NULL). Customer a appears

in the list, and therefore the predicate a IN(a, b, NULL) returns TRUE. The predicate a NOT
IN(a, b, NULL) returns NOT TRUE, or FALSE, and customer a is not returned by the query.
Customer ¢, on the other hand, does not appear in the list (a, b, NULL), but the logical result
of ¢ IN(a, b, NULL) is UNKNOWN because of the NULL. The predicate ¢ NOT IN(a, b, NULL)
therefore returns NOT UNKNOWN, which equals UNKNOWN, and customer c is not returned
by the query, either, even though c does not appear in the customer list. Whether or not

a customer appears in the customer list, the customer is not returned by the query if the

list contains NULL. You realize that when NULLs are potentially involved (such as when the
queried column allows NULLs), NOT EXISTS and NOT IN are not logically equivalent. This
explains the discrepancy between the plans and the potential difference in results. To make
the NOT IN query logically equivalent to the NOT EXISTS query, declare the column as NOT
NULL (if appropriate) or add a filter to the subquery to exclude NULLs:

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE country = N'Spain'
AND custid NOT IN(SELECT custid FROM Sales.Orders
WHERE custid IS NOT NULL);

This query generates the same result as the NOT EXISTS query, as well as the same plan.
When you're done testing the queries, make sure you remove the row with the NULL custid:

DELETE FROM Sales.Orders WHERE custid IS NULL;
DBCC CHECKIDENT('Sales.Orders', RESEED, 11077);

Minimum Missing Value To put your knowledge of the EXISTS predicate into action, try to
solve the following problem. First create and populate the table T1 by running the code in
Listing 6-1.

310

Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 6-1 Creating and populating the table T1

USE tempdb;

GO

IF OBJECT_ID('dbo.T1') IS NOT NULL
DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1

(
keycol INT NOT NULL PRIMARY KEY CHECK(keycol > 0),
datacol VARCHAR(10) NOT NULL

);

INSERT INTO dbo.T1l(keycol, datacol) VALUES

@3, 'a",
4, 'b"),
6, 'c",
7, 'd");

Notice that keycol must be positive. Your task is to write a query that returns the lowest
missing key, assuming that key values start at 1. For example, the table is currently populated
with the keys 3, 4, 6, and 7, so your query should return the value 1. If you insert two more
rows, with the keys 1 and 2, your query should return 5.

Here's a suggested CASE expression (incomplete) that | used in my solution:

SELECT
CASE
WHEN NOT EXISTS(SELECT * FROM dbo.T1l WHERE keycol = 1) THEN 1
ELSE (...subquery returning minimum missing value...)
END;

If 1 doesn't exist in the table, the CASE expression returns 1; otherwise, it returns the result of
a subquery returning the minimum missing value.

Here's the subquery that | used to return the minimum missing value:

SELECT MIN(CA.keycol) + 1 as missing
FROM dbo.T1 AS A
WHERE NOT EXISTS

(SELECT * FROM dbo.T1 AS B

WHERE B.keycol = A.keycol + 1);

The NOT EXISTS predicate returns TRUE only for values in T1 that are right before a gap

(4 and 7 in our case). A value is right before a gap if the value plus one does not exist in the
same table. The outer T1 table has the alias A, and the inner T1 table has the alias B. You
could use the expression B.keycol — 1 = A.keycol in the subquery's filter, although it might
be a bit confusing to use such an expression when looking for a value in B that is greater
than the value in A by one. If you think about it, for B.keycol to be greater than A.keycol b