CHPATER 1:

Basic Concepts

Basic Concepts

- An open channel is one that has its top surface open and so, water having pressure equal to the <u>atmospheric pressure</u>.
- Open-channel flows are not entirely included within *rigid* boundaries; a part of the flow is in contract with <u>nothing at all</u>, just empty space.
- Because the flow boundary is <u>freely deformable</u>, in contrast to the solid boundaries, the flow surface is called a free surface.

Channel vs. Pipe

- In the pipe flow, there is no direct atmospheric flow and there would be hydraulic pressure only.
- The flow in open channel is due to gravity while in pipe flow pressure works (e.g., pumping water)
- In open channels, flow conditions are greatly influenced by slope of the channel.
- In pipes the flow cross section is known and fixed while it is unknown in open channel.

Types of Open-Channels

Examples of open channels flow are river, streams, flumes, sewers, ditches and lakes.

Types of Open-Channels

Classification of Open-Channel

Natural Channels: Very irregular in shape.

Rivers, tidal estuaries.

Prismatic Channels: unvarying crosssection and constant bottom slope. Artificial channels like Rectangular, Trapezoid

Artificial Channels: Developed by men and usually designed with regular geometric shapes. Irrigation canals, laboratory flumes.

Non-Prismatic Channels varying crosssection and bottom slope. The natural channels are usually prismatic

Classification of Open-Channel

RigidBoundaryChannels:Non-changeable boundaries (bed and sides).Lined canals, sewers and non-erodible unlinedcanals

Small Slope Channels: having a bottom slope less than 1 in 10 (10%).

Mobile Boundary Channels: Boundary is composed of loose sedimentary particles moving under the action of flowing water. An alluvial channel

Large Slope Channels: having a bottom slope greater than 1 in 10 (10%).

Flow classification

Flow classification (Time Criteria)

- If the flow parameters, such as velocity, pressure, density and flow rate do not vary with time then the flow is steady.
- Steady flow (dy/dt = 0).
 Water depth <u>at one point</u> is same all the time. (Flow constant with time)

 If the flow parameters vary with time then the flow is categorized as unsteady.

Unsteady flow $(dy/dt \neq 0)$ Water **depth changes** <u>all the</u> <u>time</u>. (Flow variation with time)

Flow classification (Space Criteria - Uniform Flow)

 If the flow parameters do not vary with distance along the flow path, then the flow is uniform.

Uniform flow (dy/dx = 0) Water depth same along the whole length of flow.

$$V_1 = V_2$$
$$A_1 = A_2$$

 Depth of water in a uniform flow is called normal depth or yn

Uniform Flow

Flow classification (Space Criteria - Non uniform Flow)

 If the flow parameters vary with distance along the flow path, then the flow is <u>non-uniform</u>.

Non-uniform flow (dy/dx ≠ 0)
 Water depth changes either rapidly or gradually.

Flow classification (Space Criteria – Non Uniform Flow)

 Rapidly varying flows (RVF): flow depths that vary considerably over a short distance

Gradually varying flow (GVF): flow depths that vary slowly with distance.

Flow classification (flow particles motion)

Laminar

• Type of fluid flow in which the fluid travels <u>smoothly</u> or in regular paths.

Laminar>	

The flow channel is relatively small, the fluid is moving slowly, and its viscosity is relatively high.

Flow classification (flow particles motion)

Turbulent

 The fluid undergoes irregular fluctuations and mixing.

Most kinds of fluid flow are turbulent except near solid boundaries

Transitional

Effective Forces In Flow Analysis (Reynolds number)

A non-dimensional number

Reynolds number = $\frac{Inetria \ Forces}{Viscous \ Forces}$

$R_e =$	$V \times D$
	υ

where V = Average velocity of flow, D = pipe diameter, and v = Kinematic viscosity of the fluid.

$$R_e = \frac{V \times R_h}{v}$$

where V = Average velocity of flow, R_h = is hydraulic radius, and v = Kinematic viscosity of the fluid.

Laminar flow : **Re < 500** (viscous > inertia)

Turbulent flow: Re > 1300 (inertia > viscous)

Transitional flow: 500 < Re < 1300

Effective Forces In Flow Analysis (hydraulic radius)

The hydraulic radius is the term used to describe the shape of a channel.

 $R_h = \frac{\text{Cross sectional area}}{\text{wetted perimeter}} = \frac{A}{P}$

• The wetted perimeter *does not* include the free surface.

Example 1-1

Determine the type of flow (laminar or turbulent) for the following rectangular channel.

Example 1-2

Determine the type of flow (laminar or turbulent) for the following trapezoidal channel.

Example 1-3

Determine the hydraulic radius for the following circular channel.

	rectangular	trapezoidal	triangular	circular	parabolic
	$ \begin{array}{c} B \\ \hline B \\ \hline b \\ \hline h \\ b \\ \hline b \\ \hline h \\ \hline h \\ \hline b \\ \hline h \\ \hline \hline \hline h \\ \hline \hline h \\ \hline \hline \hline \hline \hline h \\ \hline \hline$	A = A = A = A = A = A = A = A = A = A =	B		
flow area A	bh	(b+mh)h	mh ²	$\frac{1}{8}(\theta - \sin\theta)D^2$	$\frac{2}{3}Bh$
wetted perimeter P	b+2h	$b+2h\sqrt{1+m^2}$	$2h\sqrt{1+m^2}$	$\frac{1}{2} \theta D$	$B + \frac{8}{3} \frac{h^2}{B} $
hydraulic radius R _h	$\frac{bh}{b+2h}$	$\frac{(b+mh)h}{b+2h\sqrt{1+m^2}}$	$\frac{mh}{2\sqrt{1+m^2}}$	$\frac{1}{4} \left[1 - \frac{\sin \theta}{\theta} \right] D$	$\frac{2B^2h}{3B^2+8h^2} $ *
top width B	Ь	b+2mh	2mh	$ \begin{array}{c} (\sin\theta/2)D\\ or\\ 2\sqrt{h(D-h)}\end{array} $	$\frac{3}{2}Ah$
hydraulic depth D _h	h	$\frac{(b+mh)h}{b+2mh}$	$\frac{1}{2}h$	$\left[\frac{\theta - \sin\theta}{\sin\theta/2}\right]\frac{D}{8}$	$\frac{2}{3}h$

Effective Forces In Flow Analysis (Froude number)

Dimensionless number

 $Fr = \frac{Inetria\ Forces}{Gravity\ Forces} = \frac{V}{\sqrt{gR_h}}$

Fr < 1 : Flow is subcritical

Flow is **deep**, **slow** with a **low energy** state

Fr = 1 : Flow is critical

There is a perfect **balance** between the gravitational and inertial forces.

Fr > 1 : Flow is supercritical

Flow is **fast flow** with a **high energy** state

Effective Forces In Flow Analysis (Critical Depth)

Critical depth y_c occurs at Fr = 1

$$Fr = 1$$

$$R_{h} = y$$

$$y = y_{c} = \frac{V^{2}}{g}$$

$$Fr^{2} = \frac{V^{2}}{gy}$$

At low flow velocities (Fr < 1), So: **y** > **y**_c

At high flow velocities (Fr > 1), So: y < y_c

Example 1-4

Determine the flow condition (subcritical, critical or supercritical) for a rectangular channel with the flow velocity of 2.32 m/s.

Example 1-5

Flow in a rectangular channel with the width of <u>10</u> ft is critical with the velocity of <u>11.35</u> ft/s. Find the depth of flow.

Example 1-6

Determine the critical depth and flow condition (sub or super critical) in a triangle channel with the side slope of <u>1:1</u>, depth of <u>2</u> ft, and V = 5.28 ft/s.

• The wave speed (C) is: $C = \sqrt{gy}$

For a wide rectangular channel, the hydraulic depth, R_h=y.
 Therefore, Froude number becomes:

$$Fr = \frac{V}{\sqrt{gy}} = \frac{V}{C}$$
 Super Critical $Fr > 1 \rightarrow V > C$

 Since V > C, it <u>CANNOT</u> propagate upstream it can propagate only towards downstream.

- This means the flow at upstream will not be affected.
- In other words, <u>there is no hydraulic communication</u> <u>between upstream and downstream flow</u>.

• For a wide rectangular channel:

 Since V < C, it <u>CAN</u> propagate **both** upstream and downstream.

- This means the flow at <u>upstream</u> and <u>downstream</u> will both be affected.
- In other words, <u>there is hydraulic communication</u> <u>between upstream and downstream flow</u>.

• For a wide rectangular channel:

$$Fr = rac{V}{\sqrt{gy}} = rac{V}{C}$$
 Critical $Fr = 1 \rightarrow V = 0$

- Since V = C, it <u>CAN</u> propagate only downstream.
- This means the flow at <u>downstream</u> will be affected.

T
y A
P

$$\frac{Q^2T}{gA^3} = Fr^2$$

 $\frac{Q^2T}{gA^3} = 1$

Hydraulic Mean Depth = $D_h = \frac{A}{T}$

$$Fr = rac{V}{\sqrt{g.D_h}}$$

- Critical flow characteristics:
 - Unstable surface
 - Series of stationary or standing waves
- Occurrence

Broad crested weir (and other weirs)Channel Controls (rapid changes in cross-section)Over falls

Changes in channel slope from mild to steep

Used for flow measurements

Unique relationship between depth and discharge

Observed standing waves on the surface of a liquid in a vibrating container

In a **rectangular** channel, we have:

$$q(m^2/s) = \frac{Q}{b = T}$$

Discharge per unit width

$$q = \sqrt{gy_c^3} \qquad \frac{y_c}{2} = \frac{V_c^2}{2g}$$

	rectangular	trapezoidal	triangular	circular	parabolic
	$\xrightarrow{B} \\ \xleftarrow{b} \\ h$	$ \begin{array}{c} B \\ 1 \\ m \\ b \\ b \\ \end{array} $			
flow area A	bh	(b+mh)h	mh ²	$\frac{1}{8}(\theta - \sin\theta)D^2$	$\frac{2}{3}Bh$
wetted perimeter P	b+2h	$b+2h\sqrt{1+m^2}$	$2h\sqrt{1+m^2}$	$\frac{1}{2}\theta D$	$B + \frac{8}{3} \frac{h^2}{B} $
hydraulic radius R _h	$\frac{bh}{b+2h}$	$\frac{(b+mh)h}{b+2h\sqrt{1+m^2}}$	$\frac{mh}{2\sqrt{1+m^2}}$	$\frac{1}{4} \left[1 - \frac{\sin \theta}{\theta} \right] D$	$\frac{2B^2h}{3B^2+8h^2} $ *
top width B	Ь	b+2mh	2mh	$ \begin{array}{c} (\sin\theta/2)D\\ or\\ 2\sqrt{h(D-h)}\end{array} $	$\frac{3}{2}Ah$
hydraulic depth D _h	h	$\frac{(b+mh)h}{b+2mh}$	$\frac{1}{2}h$	$\left[\frac{\theta - \sin\theta}{\sin\theta/2}\right]\frac{D}{8}$	$\frac{2}{3}h$

Example 1-7

Determine the critical depth and critical velocity of flow in a <u>rectangular</u> channel with the width of 2 m and flow rate of 8 m3/s.

Example 1-8

Determine the critical depth and critical velocity of flow in a <u>trapezoidal</u> channel with the width of 2 m, side slope 1:2, and flow rate of 8 m3/s.

- The velocities in channel are not uniformly distributed (usually axisymmetric) in channel section because of presence of a free surface and friction along the channel wall.
- It might be expected to find the maximum velocity at the free surface where the shear force is zero but this is not the case.

- The <u>maximum</u> velocity is usually found just below the surface.
- The reason is the presence of secondary currents which are circulating from the boundaries towards the section center and resistance at the air/water interface.

The measured maximum velocity usually appears to occur below the free surface at a distance <u>0.05</u> to <u>0.15</u> (some references say <u>0.25</u>) of the depth.

- The velocity distribution at each section of a channel depends on many factors including shape of the channel at the section, the channel roughness and the presence of bends.
- The roughness causes the curvature of vertical velocity distribution increases.

- In a wide open channel, the sides of the channel have no influence on the velocity distribution in the central region.
- A <u>wide</u> channel can be defined as rectangular channel that width is greater than <u>10 times</u> the depth of flow.
- Hydraulic radius for a wide channel will approximate the depth.

$$\frac{b}{y} = 10 \rightarrow R_h = \frac{10y^2}{12y} = 0.83y$$

$$\frac{b}{y} = 200 \rightarrow R_h = \frac{200y^2}{202y} = 0.99y$$

Q1-1 Determine the flow regime (Laminar, Turbulent or Transitional) in the following triangle channel which the flow velocity is <u>2.9</u> ft/s.

Q1-2 Calculate the <u>hydraulic radius</u> for the following channel.

Q1-3 Determine the flow condition (sub or supercritical) in a rectangular flume with the flow velocity of 1.52 m/s and width of 1.36 m, if:

- a. Ratio of flume width to flow depth is 4.0
- b. Ratio flume width to flow depth is 0.5
- c. Flume is very wide ($\frac{b}{v} \ge 10$)

Q1-4 What is the critical depth and critical velocity in trapezoidal channel with the side slope of <u>1:2</u>, width of <u>3 m</u>, and flow capacity of <u>20 m3/s</u>.