chapter 1 Introduction

(1) Magneto strictive Material
(2) Electro rheological fluids
(0) Magneto rheological fluids

EXAMPLE PROBLEM 2.2

Chapter
 2
 Atomic Structure and Interatomic Bonding

The attractive bonding forces are coulombic

$$
E_{A}=-\frac{A}{r}
$$

Theoretically, the constant A is equal to

$$
A=\frac{1}{4 \pi \epsilon_{0}}\left(\left|Z_{1}\right| e\right)\left(\left|Z_{2}\right| e\right)
$$

An analogous equation for the repulsive energy is ${ }^{5}$

$$
\begin{equation*}
E_{R}=\frac{B}{r^{n}} \tag{2.13}
\end{equation*}
$$

$$
\begin{align*}
E_{N} & =\int_{r}^{\infty} F_{N} d r \\
& =\int_{r}^{\infty} F_{A} d r+\int_{r}^{\infty} F_{R} d r \\
& =E_{A}+E_{R} \\
F & =\frac{d E}{d r} \tag{2.12}\\
F_{N} & =F_{A}+F_{R} \\
& =\frac{d E_{A}}{d r}+\frac{d E_{R}}{d r}
\end{align*}
$$

Percent ionic character(\%IC) of a bond between elements A and B :

$$
\% I C=\left\{1-e^{-\left(\frac{X_{A}-X_{B}}{2}\right)^{2}}\right\} \times 100
$$

Computation of Attractive and Repulsive Forces between Two Ion

The atomic radii of K^{+}and Br^{-}ions are 0.138 and 0.196 nm , respectively.
(a) Using Equations 2.9 and 2.10, calculate the force of attraction between these two ions at their equilibrium interionic separation (i.e., when the ions just touch one another).
(b) What is the force of repulsion at this same separation distance?

Solution
(a) From Equation 2.5b, the force of attraction between two ions is

$$
F_{A}=\frac{d E_{A}}{d r}
$$

Whereas, according to Equation 2.9,

$$
E_{A}=-\frac{A}{r}
$$

Now, taking the derivation of E_{A} with respect to r yields the following expression for the force of attraction F_{A}

$$
F_{A}=\frac{d E_{A}}{d r}=\frac{d\left(-\frac{A}{r}\right)}{d r}=-\left(\frac{-A}{r^{2}}\right)=\frac{A}{r^{2}}
$$

Now substitution into this equation the expression for A (Eq. 2.10) gives

$$
F_{A}=\frac{1}{4 \pi \epsilon_{0} r^{2}}\left(\left|Z_{1}\right| e\right)\left(\left|Z_{2}\right| e\right)
$$

Incorporation into this equation values for e and ϵ_{0} leads to

$$
\begin{align*}
F_{A} & =\frac{1}{4 \pi\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(r^{2}\right)}\left[\left|Z_{1}\right|\left(1.602 \times 10^{-19} \mathrm{C}\right)\right]\left[\left|Z_{2}\right|\left(1.602 \times 10^{-19} \mathrm{C}\right)\right] \\
& =\frac{\left(2.31 \times 10^{-28} \mathrm{~N} \cdot \mathrm{~m}^{2}\right)\left(\left|Z_{1}\right|\right)\left(\left|Z_{2}\right|\right)}{r^{2}} \tag{2.14}
\end{align*}
$$

For this problem, r is taken as the interionic separation r_{0} for KBr , which is equal to the sum of the K^{+}and Br^{-}ionic radii inasmuch as the ions touch one another-that is,

$$
\begin{aligned}
r_{0} & =r_{\mathrm{K}^{+}}+r_{\mathrm{Br}^{-}} \\
& =0.138 \mathrm{~nm}+0.196 \mathrm{~nm} \\
& =0.334 \mathrm{~nm} \\
& =0.334 \times 10^{-9} \mathrm{~m}
\end{aligned}
$$

When we substitute this value for r into Equation 2.14, and taking ion 1 to be K^{+}and ion 2 as Br^{-}(i.e., $Z_{1}=+1$ and $Z_{2}=-1$), then the force of attraction is equal to

$$
F_{A}=\frac{\left(2.31 \times 10^{-28} \mathrm{~N} \cdot \mathrm{~m}^{2}\right)(|+1|)(|-1|)}{\left(0.334 \times 10^{-9} \mathrm{~m}\right)^{2}}=2.07 \times 10^{-9} \mathrm{~N}
$$

(b) At the equilibrium separation distance the sum of attractive and repulsive forces is zero according to Equation 2.4. This means that

$$
F_{R}=-F_{A}=-\left(2.07 \times 10^{-9} \mathrm{~N}\right)=-2.07 \times 10^{-9} \mathrm{~N}
$$

EXAMPLE PROBLEM 2.3

Calculation of the Percent Ionic Character for the C-H Bond

Compute the percent ionic character $(\% \mathrm{IC})$ of the interatomic bond that forms between carbon and hydrogen.

Solution
The \%IC of a bond between two atoms/ions, A and B (A being the more electronegative) is a function of their electronegativities X_{A} and X_{B}, according to Equation 2.16. The electronegativities for C and H (see Figure 2.9) are $X_{\mathrm{C}}=2.5$ and $X_{\mathrm{H}}=2.1$. Therefore, the $\% \mathrm{IC}$ is

$$
\begin{aligned}
\% \mathrm{IC} & =\left\{1-\exp \left[-(0.25)\left(X_{\mathrm{C}}-X_{\mathrm{H}}\right)^{2}\right]\right\} \times 100 \\
& =\left\{1-\exp \left[-(0.25)(2.5-2.1)^{2}\right]\right\} \times 100 \\
& =3.9 \%
\end{aligned}
$$

chapter 3 The Structure of Crystalline Solids

Crystal Structures

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	$a=b=c$	$\alpha=\beta=\gamma=90^{\circ}$	
		$a / a / a$	

Hexagonal $\quad a=b \neq c \quad \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$

Tetragonal	$a=b \neq c$	$\alpha=\beta=\gamma=90^{\circ}$
Rhombohedral (Trigonal)	$a=b=c$	$\alpha=\beta=\gamma \neq 90^{\circ}$

Orthorhombic $\quad a \neq b \neq c \quad \alpha=\beta=\gamma=90^{\circ} \quad$
Monoclinic $\quad a \neq b \neq c \quad \alpha=\gamma=90^{\circ} \neq \beta$

A

 - ABCABC... Stacking Sequence

- FCC Unit Cell

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence

LD $=\frac{\text { number of atoms centered on direction vector }}{\text { length of direction }}$ length of direction vector
$\mathrm{PD}=\underline{\text { number of atoms centered on a plane }}$ area of plane

X-Ray Diffraction and Bragg's Law

Chapter

Point defects

Line defects			
Edge \longrightarrow exist or not exist a plan Surface defects Volume defects	Line defects		Screw \longrightarrow a shear stress
:---			
Mixed \longrightarrow both of them			

Atomic vibration

Electroneutrality (charge balance) must be maintained when impurities are present
Ex: $\mathrm{NaCl} \mathrm{Na}^{+} \mathrm{Cl}^{-}$

Conditions for substitutional solid solution (S.S.)
W. Hume - Rothery rule

1. Δr (atomic radius) $<15 \%$
2. Proximity in periodic
3. Proximity in periodic table
4. Same crystal structure for pure metals
-4. Valency
All else being equal, a metal will have a greater endency
to dissosve a metal of thigher valency than one of lower
valency valency

Pores + Voids (\%ip)

Crackes (\%)
Precipitate (رسب)

Figure 4.10 Schematic diagram showing a twin plane or boundary and the adjacent atom positions (colored circles).
$\longleftarrow-\theta \xrightarrow{\longrightarrow}$
Figure 4.9 Demonstration of how a tilt boundary having an angle of misorientation θ results from an alignment of edge dislocations.

	External Surface Surface	Tilt Boundaries
defects	Twin Poundaries Plan	twist Boundaries
	Stacking Faults	

$\stackrel{H}{\square}$

Point defects
in Ceramics
schottky defect \longrightarrow يك جفت كاتيرن , آيزيرن سر باى غرد نباشن.

$\rightarrow \mathrm{b}$

Volum
defects

قفل شُن نباببايى ها موبب افزايش دelوهت ماره هيشور .

Equilibrium Concentration Point Defects

- Equilibrium concentration varies with temperature!

EXAMPLE PROBLEM 4.1

Number-of-Vacancies Computation at a Specified Temperature

Calculate the equilibrium number of vacancies per cubic meter for copper at $1000^{\circ} \mathrm{C}$. The energy for vacancy formation is $0.9 \mathrm{eV} /$ atom; the atomic weight and density (at $1000^{\circ} \mathrm{C}$) for copper are $63.5 \mathrm{~g} / \mathrm{mol}$ and $8.4 \mathrm{~g} / \mathrm{cm}^{3}$, respectively.

Solution

This problem may be solved by using Equation 4.1 ; it is first necessary, however, to determine the value of N-the number of atomic sites per cubic meter for copper, from its atomic weight A_{Cu}, its density ρ, and Avogadro's number N_{A}, according to

$$
\begin{align*}
N & =\frac{N_{\mathrm{A}} \rho}{A_{\mathrm{Cu}}} \tag{4.2}\\
& =\frac{\left(6.022 \times 10^{23} \mathrm{atoms} / \mathrm{mol}\right)\left(8.4 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(10^{6} \mathrm{~cm}^{3} / \mathrm{m}^{3}\right)}{63.5 \mathrm{~g} / \mathrm{mol}} \\
& =8.0 \times 10^{28} \mathrm{atoms} / \mathrm{m}^{3}
\end{align*}
$$

of vacancies at $1000^{\circ} \mathrm{C}(1273 \mathrm{~K})$ is equal to

$$
\begin{aligned}
N_{v} & =N \exp \left(-\frac{Q_{v}}{k T}\right) \\
& =\left(8.0 \times 10^{28} \text { atoms } / \mathrm{m}^{3}\right) \exp \left[-\frac{(0.9 \mathrm{eV})}{\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(1273 \mathrm{~K})}\right] \\
& =2.2 \times 10^{25} \mathrm{vacancies} / \mathrm{m}^{3}
\end{aligned}
$$

$C_{1}=\frac{m_{1}}{m_{1}+m_{2}} \times 100$
Composition in weight percent

Composition in atom percent
$C_{1}^{\prime}=\frac{C_{1} A_{2}}{C_{1} A_{2}+C_{2} A_{1}} \times 100$
Conversion from weight percent to atom percent
$C_{1}=\frac{C_{1}^{\prime} A_{1}}{C_{1}^{\prime} A_{1}+C_{2}^{\prime} A_{2}}$
100
Conversion from atom percent to weight percent
$C_{1}^{\prime \prime}=\left(\frac{C_{1}}{\frac{C_{1}}{\rho_{1}}+\frac{C_{2}}{\rho_{2}}}\right) \times 10^{3}$
Conversion from weight percent to mass per unit volume
$\rho_{\text {ave }}=\frac{100}{\frac{C_{1}}{\rho_{1}}+\frac{C_{2}}{\rho_{2}}}$
$A_{\text {ave }}=\frac{100}{\frac{C_{1}}{A_{1}}+\frac{C_{2}}{A_{2}}}$
Average atomic weight of a two-component alloy

Optical Microscopy

$\begin{array}{rl} & \bar{e}=\frac{L_{T}}{P M} \\ 0 & n=2^{G-1} \\ 0 & n_{M}=\left(2^{G-1}\right)\left(\frac{M}{100}\right)^{2}\end{array}$
Mean intercept length (measure of average grain diameter) Number of grains per square inch at a magnification of $100 \times$ $100 \times$
$M=$ measured scale length (converted to microns)
M Magnification
the number appearing by the scale bar (in microns)
G ASTM grain-size number

EXAMPLE PROBLEM 4.5

$$
\begin{aligned}
G & =-6.6457 \log \bar{\ell}-3.298 & & \text { (for } \bar{\ell} \text { in mm) } \\
G & =-6.6353 \log \bar{\ell}-12.6 & & \text { (for } \bar{\ell} \text { in in. }
\end{aligned}
$$

Grain-Size Computations Using ASTM and Intercept Methods

The following is a schematic micrograph that represents the microstructure of some hypothetical
Determine the following:
(a) Mean intercept length
(b) ASTM grain-size number, G using Equation 4.19a

Solution
(a) We first determine the magnification of the micrograph using Equation 4.20. The scale bar length is measured and found to be 16 mm , which is equal to $16,000 \mu \mathrm{~m}$; and because the scale bar number is $100 \mu \mathrm{~m}$, the magnification is

$$
M=\frac{16,000 \mu \mathrm{~m}}{100 \mu \mathrm{~m}}=160 \times
$$

he following sketch is the same micrograph on which have been drawn seven straight lines (in red), which have been numbered.
The length of each line is 50 mm , and thus he total line length (L_{T} in Equation 4.16) is
$(7$ lines $)(50 \mathrm{~mm} /$ line $)=350 \mathrm{~mm}$
Tabulated next is the number of grain-boundary intersections for each line:

Line Number	Number of Grain- Boundary Intersections
1	8
2	8
3	8
4	9
5	9
6	9
7	7
Total	58

Thus, inasmuch as $L_{T}=350 \mathrm{~mm}, P=58$ grain-boundary intersections, and the magnification $M=160 \times$, the mean intercept length $\bar{\ell}$ (in millimeters in real space), Equation 4.16, is equal to

$$
\begin{aligned}
\bar{\ell} & =\frac{L_{T}}{P M} \\
& =\frac{350 \mathrm{~mm}}{(58 \text { grain boundary intersections)(160×)}}=0.0377 \mathrm{~mm}
\end{aligned}
$$

(b) The value of G is determined by substitution of this value for $\bar{\ell}$ into Equation 4.19a; therefore,

$$
\begin{aligned}
G & =-6.6457 \log \bar{\ell}-3.298 \\
& =(-6.6457) \log (0.0377)-3.298 \\
& =6.16
\end{aligned}
$$

$\nu=-\frac{\epsilon_{x}}{\epsilon_{z}}=-\frac{\epsilon_{y}}{\epsilon_{z}}$

$E=2 G(1+\nu)$

$$
\sigma=\frac{F}{A_{0}} \quad \epsilon=\frac{\Delta l}{l_{0}}
$$

Definition of shear stress

$\tau=\frac{F}{A_{0}}$
$\sigma^{\prime}=\sigma \cos ^{2} \theta$
$\tau^{\prime}=\sigma \sin \theta \cos \theta$
$\% \mathrm{EL}=\left(\frac{l_{f}-l_{0}}{l_{0}}\right) \times 100$
$\% \mathrm{RA}=\left(\frac{A_{0}-A_{f}}{A_{0}}\right) \times 100$

EXAMPLE PROBLEM 6.2

Computation of Load to Produce Specified Diameter Change
A tensile stress is to be applied
along the long axis of a cylindrical brass rod that has a diameter of 10 mm (0.4 in .). Determine the magnitude of the load required to produce a 2.5×10^{-3} $\mathrm{mm}\left(10^{-4}-\mathrm{in}\right.$.) change in diameter if the deformation is entirely elastic.

Solution

This deformation situation is represented in the accompanying drawing.
When the force F is applied, the specimen will elongate in the
z direction and at the same time experience a reduction in diam eter, Δd of $2.5 \times 10^{-3} \mathrm{~mm}$ in the x direction. For the strain in the x direction,

$$
\epsilon_{x}=\frac{\Delta d}{d_{0}}=\frac{-2.5 \times 10^{-3} \mathrm{~mm}}{10 \mathrm{~mm}}=-2.5 \times 10^{-4}
$$

which is negative because the diameter is reduced.
It next becomes necessary to calculate the strain in the z direction using Equation 6.8. The value for Poisson's ratio for brass is 0.34 (Table 6.1), and thus

$$
\epsilon_{z}=-\frac{\epsilon_{x}}{v}=-\frac{\left(-2.5 \times 10^{-4}\right)}{0.34}=7.35 \times 10^{-4}
$$

The applied stress may now be computed using Equation 6.5 and the modulus of elasticity, given in Table 6.1 as $97 \mathrm{GPa}\left(14 \times 10^{6} \mathrm{psi}\right)$, as

$$
\sigma=\epsilon_{z} E=\left(7.35 \times 10^{-4}\right)\left(97 \times 10^{3} \mathrm{MPa}\right)=71.3 \mathrm{MPa}
$$

Finally, from Equation 6.1, the applied force may be determined as

$$
\begin{aligned}
F & =\sigma A_{0}=\sigma\left(\frac{d_{0}}{2}\right)^{2} \pi \\
& =\left(71.3 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)\left(\frac{10 \times 10^{-3} \mathrm{~m}}{2}\right)^{2} \pi=5600 \mathrm{~N}\left(1293 \mathrm{lb}_{\mathrm{f}}\right)
\end{aligned}
$$

Figure 6.10 (a) Typical stressstrain behavior for a metal showing elastic and plastic deformations, the proportional limit P, and the yield 0.002 strain offset method. (b) Representative stress-strain behavior found for some steels demonstrating the yield point phenomenon.

Resilience

$U_{r}=\frac{1}{2} \sigma_{y} \epsilon_{y}=\frac{1}{2} \sigma_{y}\left(\frac{\sigma_{y}}{E}\right)=\frac{\sigma_{y}^{2}}{2 E}$

 representation showing representation showing
how modulus of resilience how modulus of resine shaded area) is determined from the tensile stress-strain behavior of a material.

TRUE STRESS AND STRAIN

$$
\begin{aligned}
& \epsilon_{T}=\ln \frac{l_{i}}{b_{0}} \\
& \sigma_{T}=\sigma(1+\epsilon)
\end{aligned}
$$

HARDNESS

Figure 6.14 Engineering stress-strain behavior for iron at three temperatures.

EXAMPLE PROBLEM 6.4

Ductility and True-Stress-at-Fracture Computations

A cylindrical specimen of steel having an original dancer 12.8 mm (0.505 in .) is tensile tested to fracture and found to have an engineering fracture strength σ_{f} of $460 \mathrm{MPa}(67,000 \mathrm{psi})$. If its cross-sectional diameter at fracture is 10.7 mm (0.422 in .), determine
(a) The ductility in terms of percentage reduction in area
(b) The true stress at fracture

Solution
(a) Ductility is computed using Equation 6.12, as

$$
\begin{aligned}
\% \text { RA } & =\frac{\left(\frac{12.8 \mathrm{~mm}}{2}\right)^{2} \pi-\left(\frac{10.7 \mathrm{~mm}}{2}\right)^{2} \pi}{\left(\frac{12.8 \mathrm{~mm}}{2}\right)^{2} \pi} \times 100 \\
& =\frac{128.7 \mathrm{~mm}^{2}-89.9 \mathrm{~mm}^{2}}{128.7 \mathrm{~mm}^{2}} \times 100=30 \%
\end{aligned}
$$

(b) True stress is defined by Equation 6.15, where, in this case, the area is taken as the fracture area $A_{f .}$ However, the load at fracture must first be computed from the fracture strength as

$$
F=\sigma_{f} A_{0}=\left(460 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)\left(128.7 \mathrm{~mm}^{2}\right)\left(\frac{1 \mathrm{~m}^{2}}{10^{6} \mathrm{~mm}^{2}}\right)=59,200 \mathrm{~N}
$$

Thus, the true stress is calculated as

$$
\sigma_{T}=\frac{F}{A_{f}}=\frac{59,200 \mathrm{~N}}{\left(89.9 \mathrm{~mm}^{2}\right)\left(\frac{1 \mathrm{~m}^{2}}{10^{6} \mathrm{~mm}^{2}}\right)}
$$

$$
=6.6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}=660 \mathrm{MPa}(95,700 \mathrm{psi})
$$

EXAMPLE PROBLEM 6.5

Calculation of Strain-Hardening Exponent

Compute the strain-hardening exponent n in Equation 6.19 for an alloy in which a true stress of $415 \mathrm{MPa}(60,000 \mathrm{psi})$ produces a true strain of 0.10 ; assume a value of $1035 \mathrm{MPa}(150,000 \mathrm{psi})$ for K.

Solution

This requires some algebraic manipulation of Equation 6.19 so that n becomes the dependen parameter. This is accomplished by taking logarithms and rearranging. Solving for n yields

$$
\begin{aligned}
n & =\frac{\log \sigma_{T}-\log K}{\log \epsilon_{T}} \\
& =\frac{\log (415 \mathrm{MPa})-\log (1035 \mathrm{MPa})}{\log (0.1)}=0.40
\end{aligned}
$$

Average and Standard Deviation Computation

The following tensile strengths were measured for four specimens of the same steel alloy:

Sample Number	Tensile Strength (MPa)
1	520
2	512
3	515
4	522

(a) Compute the average tensile strength

(b) Determine the standard deviation.

Solution

(a) The average tensile strength $(\overline{T S})$ is computed using Equation 6.21 with $n=4$:

$$
\begin{aligned}
\overline{T S} & =\frac{\sum_{i=1}^{4}(T S)_{i}}{4} \\
& =\frac{520+512+515+522}{4} \\
& =517 \mathrm{MPa}
\end{aligned}
$$

(b) For the standard deviation, using Equation 6.22, we obtain

$$
\begin{aligned}
s & =\left[\frac{\sum_{i=1}^{4}\left\{(T S)_{i}-\overline{T S}\right\}^{2}}{4-1}\right]^{1 / 2} \\
& =\left[\frac{(520-517)^{2}+(512-517)^{2}+(515-517)^{2}+(522-517)^{2}}{4-1}\right]^{1 / 2} \\
& =4.6 \mathrm{MPa}
\end{aligned}
$$

Figure 6.20 presents the tensile strength by specimen number for this example problem and also how the data may be represented in graphical form. The tensile strength data point (Figure $6.20 b$) corresponds to the average value $\overline{T S}$, and scatter is depicted by error
bars (short horizontal lines) situated above and below the data point symbol and connected to this symbol by vertical lines. The upper error bar is positioned at a value of the average value plus the standard deviation $(\overline{T S}+s)$, and the lowe error bar corresponds to the average minus the standard deviation $(\overline{T S}-s)$.

Figure 6.20 (a) Tensile strength data associated with Example Problem 6.6. (b) The manner in which these data could be plotted. The data point corresponds the average value of the tensile strengh (TS), er. minus the standard deviation ($\overline{T S} \pm s$).

Correlation between Hardness and Tensile Strength

$$
\begin{gathered}
T S(\mathrm{MPa})=3.45 \times \mathrm{HB} \\
T S(\mathrm{psi})=500 \times \mathrm{HB}
\end{gathered}
$$

Computation of Average and Standard Deviation Values

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \quad s=\left[\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}\right]^{1 / 2}
$$

DESIGN/SAFETY FACTORS

$$
\begin{array}{cc}
\text { design stress } & \text { safe stress } \\
\sigma_{d}=N^{\prime} \sigma_{c} & \sigma_{w}=\frac{\sigma_{y}}{N}
\end{array}
$$

Figure 6.19 Relationships between hardness and tensile strength for steel, brass, and cast iron.

DESIGN EXAMPLE 6.1
Specification of Support-Post Diameter
A tensile-testing apparatus is to be constructed that must withstand a maximum load of $220,000 \mathrm{~N}$ $\left(50,000 \mathrm{lb}_{\mathrm{f}}\right)$. The design calls for two cylindrical support posts, each of which is to support half of the maximum load. Furthermore, plain-carbon (1045) steel ground and polished shafting rounds are to be used; the minimum yield and tensile strengths of this alloy are $310 \mathrm{MPa}(45,000 \mathrm{psi})$ and $565 \mathrm{MPa}(82,000 \mathrm{psi})$, respectively. Specify a suitable diameter for these support posts.

Solution

The first step in this design process is to decide on a factor of safety, N, which then allows The first step in this design process is to decide on a factor of safety, N, which then allows
determination of a working stress according to Equation 6.24 . In addition, to ensure that the determination of a working stress according to Equation 6.24. In addition, to ensure that the during testing; therefore, a relatively conservative factor of safety is to be used, say $N=5$. Thus, the working stress σ_{w} is just

$$
\begin{aligned}
\sigma_{w} & =\frac{\sigma_{y}}{N} \\
& =\frac{310 \mathrm{MPa}}{5}=62 \mathrm{MPa}(9000 \mathrm{psi})
\end{aligned}
$$

From the definition of stress, Equation 6.1,

$$
A_{0}=\left(\frac{d}{2}\right)^{2} \pi=\frac{F}{\sigma_{w}}
$$

where d is the rod diameter and F is the applied force; furthermore, each of the two rods must support half of the total force, or $110,000 \mathrm{~N}(25,000 \mathrm{psi})$. Solving for d leads to

$$
\begin{aligned}
d & =2 \sqrt{\frac{F}{\pi \sigma_{w}}} \\
& =\sqrt{\frac{110,000 \mathrm{~N}}{\pi\left(62 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)}} \\
& =4.75 \times 10^{-2} \mathrm{~m}=47.5 \mathrm{~mm}(1.87 \mathrm{in} .)
\end{aligned}
$$

Therefore, the diameter of each of the two rods should be 47.5 mm , or 1.87 in .

Materials Specification for a Pressurized Cylindrical Tube
(a) Consider a thin-walled cylindrical tube having a radius of 50 mm and wall thickness 2 mm that is to be used to transport pressurized gas. If inside and outside tube pressures are 20 and 0.5 atm (2.027 and 0.057 MPa), respectively, which of the metals and alloys listed in Table 6.8 are suitable candidates? Assume a factor of safety of 4.0.

For a thin-walled cylinder, the circumferential (or "hoop") stress (σ) depends on pressure difference (Δp), cylinder radius $\left(r_{i}\right)$, and tube wall thickness (t) as follows:

$$
\begin{equation*}
\sigma=\frac{r_{i} \Delta p}{t} \tag{6.25}
\end{equation*}
$$

These parameters are noted on the schematic sketch of a cylinder presented in Figure 6.21. (b) Determine which of the alloys that satisfy the criterion of part (a) can be used to produce a tube with the lowest cost.

Solution

(a) In order for this tube to transport the gas in a satisfactory and safe manner, we want to minimize the likelihood of plastic deformation. To accomplish this, we replace the circumminimize the likelihood of plastic deformation. To accomplish this, we replace the circum-
ferential stress in Equation 6.25 with the yield strength of the tube material divided by the factor of safety, N-that is,

$$
\frac{\sigma_{y}}{N}=\frac{r_{i} \Delta p}{t}
$$

And solving this expression for σ_{y} leads to

$$
\begin{equation*}
\sigma_{y}=\frac{N r_{i} \Delta p}{t} \tag{6.22}
\end{equation*}
$$

Table 6.8 Yield Strengths, Densities, and Costs per Unit Mass for Metal Alloys That Are the Subjects of Design Example 6.2

Alloy	Yield Strength, σ_{y} (MPa)	$\begin{aligned} & \text { Density } \\ & \rho\left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{aligned}$	Unit mass cost, $\overline{\boldsymbol{c}}$ $(\$ U S / k g)$
Steel	325	7.8	1.75
Aluminum	125	2.7	5.00
Copper	225	8.9	7.50
Brass	275	8.5	10.00
Magnesium	175	1.8	12.00
Titanium	700	4.5	85.00

We now incorporate into this equation values of $N, r_{i}, \Delta p$, and t given in the problem statement and solve for σ_{y}. Alloys in Table 6.8 that have yield strengths greater than this value are suitable candidates for the tubing. Therefore,

$$
\sigma_{y}=\frac{(4.0)\left(50 \times 10^{-3} \mathrm{~m}\right)(2.027 \mathrm{MPa}-0.057 \mathrm{MPa})}{\left(2 \times 10^{-3} \mathrm{~m}\right)}=197 \mathrm{MPa}
$$

Four of the six alloys in Table 6.8 have yield strengths greater than 197 MPa and satisfy the design criterion for this tubethat is, steel, copper, brass, and titanium. (b) To determine the tube cost for each alloy it is first necessary to compute the tube rossection V .

$$
V=A L
$$

$$
\begin{equation*}
=\pi\left(r_{o}^{2}-r_{i}^{2}\right) L \tag{6.2}
\end{equation*}
$$

Here, r_{o} and r_{i} are, respectively, the tube inside and inside radii. From Figure 6.21, Figure 6.21 Schematic representation of a cyit may be observed that $r_{o}=r_{i}+t$, or that lindrical tube, the subject of Design Example 6.2.

$$
V=\pi\left(r_{o}^{2}-r_{i}^{2}\right) L=\pi\left[\left(r_{i}+t\right)^{2}-r_{i}^{2}\right] L
$$

$$
=\pi\left(r_{i}^{2}+2 r_{i} t+t^{2}-r_{i}^{2}\right) L
$$

$$
=\pi\left(2 r_{i} t+t^{2}\right) L
$$

Because the tube length L has not been specified, for the sake of convenience, we assume a value of 1.0 m . Incorporating values for r_{i} and t, provided in the problem statement leads to the following value for V :

$$
V=\pi\left[(2)\left(50 \times 10^{-3} \mathrm{~m}\right)\left(2 \times 10^{-3} \mathrm{~m}\right)+\left(2 \times 10^{-3} \mathrm{~m}\right)^{2}\right](1 \mathrm{~m})
$$

$$
=6.28 \times 10^{-4} \mathrm{~m}^{3}=628 \mathrm{~cm}^{3}
$$

Next, it is necessary to determine the mass of each alloy (in kilograms) by multiplying this value of by the alloy's density, ρ (Table 6.8) and then dividing by 1000 , which is a unit-conversion factor because $1000 \mathrm{~mm}=1 \mathrm{~m}$. Finally, cost of each alloy (in \$US) is computed from the product of this mass and the unit mass cost (\bar{c}) (Table 6.8).This procedure is expressed in equation form as follows:

$$
\begin{equation*}
\operatorname{Cost}=\left(\frac{V \rho}{1000}\right)(\bar{c}) \tag{6.29}
\end{equation*}
$$

For example, for steel,

$$
\operatorname{Cost}(\text { steel })=\left[\frac{\left(628 \mathrm{~cm}^{3}\right)\left(7.8 \mathrm{~g} / \mathrm{cm}^{3}\right)}{(1000 \mathrm{~g} / \mathrm{kg})}\right](1.75 \$ \mathrm{US} / \mathrm{kg})=\$ 8.60
$$

Cost values for steel and the other three alloys, as determined in the same manner are tabulated below.

Alloy	Cost $(\mathbf{\$ U S)}$
Steel	8.60
Copper	41.90
Brass	53.40
Titanium	240.20

Hence, steel is by far the least expensive alloy to use for the pressurized tube.

