
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

  

 
  
  

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
  

           

 

 
 

 

 

EXAMPLE PROBLEM 2.2

Computation of Attractive and Repulsive Forces between Two Ions

The atomic radii of K� and Br� ions are 0.138 and 0.196 nm, respectively.

(a)  Using Equations 2.9 and 2.10, calculate the force of attraction between these two ions at 

their equilibrium interionic separation (i.e., when the ions just touch one another).

(b) What is the force of repulsion at this same separation distance?

Solution

(a) From Equation 2.5b, the force of attraction between two ions is

FA =
dEA

dr

Whereas, according to Equation 2.9,

EA = -

A
r

Now, taking the derivation of EA with respect to r yields the following expression for the 

force of attraction FA:

FA =
dEA

dr
=

da -

A
r
b

dr
= - a -A

r2 b =
A

r2  (2.12)

Now substitution into this equation the expression for A (Eq. 2.10) gives

FA =
1

4pP0r
2 ( � Z1 �e)( � Z2 �e) (2.13)

Incorporation into this equation values for e and P0 leads to

FA =
1

4p(8.85 * 10- 12 F/m)(r2)
[ � Z1 �(1.602 * 10- 19C)][ � Z2 �(1.602 * 10- 19C)]

=
(2.31 * 10- 28 N # m2)(� Z1 �)(� Z2 �)

r2  (2.14)

For this problem, r is taken as the interionic separation r0 for KBr, which is equal to the 

sum of the K� and Br� ionic radii inasmuch as the ions touch one another—that is,

r0 = rK + + rBr -  (2.15)

= 0.138 nm + 0.196 nm

= 0.334 nm

= 0.334 * 10- 9 m

When we substitute this value for r into Equation 2.14, and taking ion 1 to be K� and ion 2 

as Br� (i.e., Z1 � �1 and Z2 � �1), then the force of attraction is equal to

FA =
(2.31 * 10- 28 N # m2)( � +1 �)( � -1 �)

(0.334 * 10- 9 m)2 = 2.07 * 10- 9 N

(b)  At the equilibrium separation distance the sum of attractive and repulsive forces is zero 

according to Equation 2.4. This means that

FR = -FA = -(2.07 * 10- 9 N) = -2.07 * 10- 9 N

An analogous equation for the repulsive energy is5

ER =
B
r n

EA = -

A
r

Theoretically, the constant A is equal to

A =
1

4pP0
( � Z1 �e)( � Z2 �e)

The attractive bonding forces are coulombic

Percent ionic character(%IC) of a bond between elements A and B :

%𝐼𝐶 = {1 − 𝑒
−(
𝑋𝐴−𝑋𝐵

2
)
2

} × 100

EN = 3
�

r
FN dr

= 3
�

r
FA dr + 3

�

r
FR dr

= EA + ER

F =
dE
dr

FN = FA + FR

=
dEA

dr
+

dER

dr

EXAMPLE PROBLEM 2.3

Calculation of the Percent Ionic Character for the C-H Bond

Compute the percent ionic character (%IC) of the interatomic bond that forms between carbon 

and hydrogen.

Solution

The %IC of a bond between two atoms/ions, A and B (A being the more electronegative) is a 

function of their electronegativities XA and XB, according to Equation 2.16. The electronega-

tivities for C and H (see Figure 2.9) are XC � 2.5 and XH � 2.1. Therefore, the %IC is

 %IC = 51 - exp[ -(0.25)(XC - XH)2]6 * 100

= 51 - exp[ -(0.25)(2.5 - 2.1)2]6 * 100

= 3.9%

Thus the COH atomic bond is primarily covalent (96.1%).
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Crystalline

Amorphous

Crystal Structures
 Axial  Unit
Crystal System Relationships Interaxial Angles Cell Geometry

Cubic a = b = c a = b = g = 90�

a
a

a

Hexagonal a = b � c a = b = 90�, g = 120�

aaa

c

Tetragonal a = b � c a = b = g = 90�

a
a

c

Rhombohedral  a = b = c a = b = g � 90�
aa

a

�

 (Trigonal)

Orthorhombic a � b � c a = b = g = 90�

a
b

c

Monoclinic a � b � c a = g = 90� � b

a
b

c
�

Triclinic a � b � c a � b � g � 90�

a
b

c
�

�

�

BCC FCC HCP

𝐴 =
4𝑅

√3
𝐴 =

4𝑅

√2

a=2R

𝑉𝐶 =
3√3

2
𝑎2𝐶

Packing 

Factor

68% 74% 74%

N 2 4 6

Coordination 8 12 12

Simple Body center Face center Base center

Cubic
   ×

Hexagonal
 × × ×

Tetragonal
 × × ×

Rhombohedral
 × × ×

Orthorhombic
   

Monoclinic
  × ×

Triclinic
 × × ×

Simple

Body center : مرکز پر

Face center : مرکز وجوه پر

Base center : مرکز پایه ها )وجوه بالا و پایینی( پر

A sites

B B

B

BB

B B

C sites

C C

C
A

B

B sites

•  ABCABC... Stacking Sequence

•  FCC Unit Cell

FCC Stacking Sequence

B B

B

BB

B B

B sites
C C

C
A

C C

C
A

A
B

C

•  ABAB... Stacking Sequence

Hexagonal Close-Packed Structure 
(HCP)

c

a

A sites

B sites

A sites Bottom layer

Middle layer

Top layer

•  Coordination # increases with

Coordination # and Ionic Radii

Adapted from Table 3.3, 
Callister & Rethwisch 3e.

2 

rcation
ranion

Coord 
#

< 0.155 

0.155 - 0.225 

0.225 - 0.414

0.414 - 0.732 

0.732 - 1.0

3 

4

6

8

linear

triangular

tetrahedral

octahedral

cubic

Adapted from Fig. 3.5, 
Callister & Rethwisch 3e.

Adapted from Fig. 3.6, 
Callister & Rethwisch 3e.

Adapted from Fig. 3.7, 
Callister & Rethwisch 3e.

ZnS 
(zinc blende)

NaCl
(sodium 
chloride)

CsCl
(cesium 
chloride)

rcation
ranion

LD =
number of atoms centered on direction vector

length of direction vector

PD =
number of atoms centered on a plane

area of plane

𝜌 =
𝑁
𝑀
𝑁𝐴
𝑉𝑐

anisotropicBCCanisotropic

isotropic :

anisotropic :



 

x  وy  وz مختصات نقطه : /// a  وb  وc ابعاد مکعب :

A  وB  وC نقاط برخورد صفحه با محورهای مختصات :

𝑞 =
𝑥

𝑎
    𝑟 =

𝑦

𝑏
  𝑠 =

𝑧

𝑐

𝑢 = 𝑛 ቀ
𝑥2 − 𝑥1

𝑎
ቁ

𝑣 = 𝑛 ቀ
𝑦2 − 𝑦1

𝑏
ቁ

𝑤 = 𝑛 ቀ
𝑧2 − 𝑧1

𝑐
ቁ

نقطه

بردار مکعبی

بردار  هگزاگونال

1

3
ሺ2𝑈 − 𝑉ሻ = 𝑢 = 3𝑛 ൬

𝑎ሷ1 − 𝑎ሶ1
𝑎

൰

1

3
ሺ2𝑉 − 𝑈ሻ = 𝑣 = 3𝑛 ൬

𝑎ሷ 2 − 𝑎ሶ 2
𝑎

൰

−ሺ𝑢 + 𝑣ሻ = 𝑡 = 3𝑛 ൬
𝑎ሷ3 − 𝑎ሶ3

𝑎
൰

 𝑊 = 𝑧 = 3𝑛 ൬
𝑧ሷ − 𝑧ሶ

𝑐
൰

ሾ𝑈 𝑉 𝑊ሿ → ሾ𝑢 𝑣 𝑡 𝑧ሿ

ℎ =
𝑛𝑎

𝐴
    𝑘 =

𝑛𝑏

𝐵
   𝑙 =

𝑛𝑐

𝐶
صفحه ی مکعبی

ℎ =
𝑛𝑎

𝐴
    𝑘 =

𝑛𝑏

𝐵
   𝑙 =

𝑛𝑐

𝐶

𝑖 = −ሺℎ + 𝑘ሻ

صفحه ی  هگزاگونال

ሺℎ 𝑘 𝑖 𝑙ሻ

𝑞 𝑟 𝑠  ∶ قطهن    نباشد .     ند صحیح می توا     ∶ 

ሾ𝑢 𝑣 𝑤ሿ   ∶ باشد .     د صحیحبای    ∶ بردار  

ሺℎ 𝑘 𝑙ሻ    ∶ باشد   د صحیحبای     ∶   صفحه 

z

x

y

(110) Plane referenced to the
origin at point O

Other equivalent
(110) planes

O

z

x

y

(111) Plane referenced to
the origin at point O

Other equivalent
(111) planes

O

z

y

x

a

b

Oc

(a)

z

y

x
(b)

x�

C = c/2B = –b

(012) Plane
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O O�

X-Ray Diffraction and Bragg’s Law

nl = SQ + QT
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�

�
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B

1

2
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dhkl
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a

2h2
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O

�
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C

16
0°
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0°
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40°
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X-Ray Generation : between Gun & target →  ∆𝑉 ⇒ e ⇒ 12  ⇒ 𝒌𝜶   𝒌𝜷

X − Ray ⇒ Fillter ⇒    ⇒ 𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ⇒   ⇒      

ورت پیوسته است ؛ یعنی ما فقط یک طول میخواهیم پس از یک فیلتر استفاده میکنیم . عناصر موج هایی با طول موج های معینی را جذب میکنند و در جامدات آن ها بص

را جدا می کنیم . 𝒌𝜶ی جذب میکنند و از آن به بعد را جذب نمی کنند و این چنین ما فقط از طول موجی به قبل را در بازه ا
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imperfection

 

Point defects

 

Line defects

 

Surface defects

 

Volume defects

 

Point defects

 

Vacancy

 

Self-interstitial

 

Sub situational

 

Interstitial

 

Point defects

 

in Ceramics

 

schottky defect

 

Frenkel

 

defect

 

. یک اتم سر جای خودش نباشد

 

.اضافه نشسته باشد یک اتم 

 

نشیند . یک اتم از جنسی دیگر در حفره ها می

 

.نشیند در فضاهای خالی بین اتمی می

 

.(درصد فضای اشغال شده دارد BCC  ،68 )مثلا

 

کاتیون و آنیون سر جای خود نباشند .یک جفت 

 

.جابجا شده باشد و سر جای خودش نباشد  کاتیون یک

 

Shottky 
Defect:

Frenkel 
Defect

Vacancy
Self-interstitial

•  Electroneutrality (charge balance) must be maintained 
when impurities are present

•  Ex:  NaCl Na+ Cl-

•  Substitutional cation impurity

without impurity Ca2+ impurity with impurity

Ca2+

Na+

Na+

Ca2+

cation 
vacancy

OR

Substitutional solid soln.
(e.g., Cu in Ni)

Interstitial solid soln.
(e.g., C in Fe)

Line defects

Edge

Screw

Mixed

exist or not exist a plan

a shear stress

both of them

Surface 

defects

Edge

Screw

Mixed

Angle of misalignment

Angle of misalignment

Small-angle
grain boundary

High-angle
grain boundary

Figure 4.9 Demonstration of 

how a tilt boundary having an angle 

of misorientation u results from an 

alignment of edge dislocations.

�

b

Figure 4.10 Schematic diagram showing a twin 

plane or boundary and the adjacent atom positions 

(colored circles).

Twin plane (boundary)

Boltzmann's constant

(1.38 x 10-23 J/atom-K) 

(8.62 x 10-5 eV/atom-K)

 Nv
N

= exp − Qv
kT











No. of defects

No. of potential 
defect sites

Activation energy

Temperature

Each lattice site 
is a potential 
vacancy site

•  Equilibrium concentration varies with temperature!

Equilibrium Concentration:
Point Defects

•  We can get Qv from
an experiment.

 Nv
N

= exp
−Qv
kT











Measuring Activation Energy

•  Measure this...

Nv

N

T

exponential 
dependence!

defect concentration

•  Replot it...

1/T

N
Nv

ln
-Qv /k

slope

EXAMPLE PROBLEM 4.1

Number-of-Vacancies Computation at a Specified Temperature

Calculate the equilibrium number of vacancies per cubic meter for copper at 1000�C. The 

energy for vacancy formation is 0.9 eV/atom; the atomic weight and density (at 1000�C) for 

copper are 63.5 g/mol and 8.4 g/cm3, respectively.

Solution

This problem may be solved by using Equation 4.1; it is first necessary, however, to determine 

the value of N—the number of atomic sites per cubic meter for copper, from its atomic weight 

ACu, its density r, and Avogadro’s number NA, according to

N =
NA

r

ACu
 (4.2)

=
(6.022 * 1023 atoms/mol)(8.4 g/cm3)(106 cm3/m3)

63.5 g/mol

= 8.0 * 1028 atoms/m3

Thus, the number of vacancies at 1000�C (1273 K) is equal to

Ny = N expa -

Qy

kT
b

= (8.0 * 1028 atoms/m3) exp c - (0.9 eV)

(8.62 * 10-5 eV/K)(1273 K)
d

= 2.2 * 1025 vacancies/m3

Volume 

defects

Conditions for substitutional solid solution (S.S.)

• W. Hume – Rothery rule
– 1.  ∆r (atomic radius) < 15%
– 2.  Proximity in periodic table 

• i.e., similar electronegativities

– 3.  Same crystal structure for pure metals
– 4.  Valency

• All else being equal, a metal will have a greater tendency 
to dissolve a metal of higher valency than one of lower 
valency

Edge
dislocation

line

Burgers vector
b



G = -6.6457 log / - 3.298   (for / in mm) 

G = -6.6353 log / - 12.6  (for / in in.) 

M =
measured scale length (converted to microns)

the number appearing by the scale bar (in microns)

/ =
LT

PM
Mean intercept length (measure of average grain diameter) 128

n = 2G - 1 Number of grains per square inch at a magnification of 100�

nM = (2G - 1)a M
100
b2

Number of grains per square inch at a magnification other than 129

100�

 G ASTM grain-size number

 M Magnification

(b)  The value of G is determined by substitution of this value for / into Equation 4.19a; 

 therefore,

G = -6.6457 log / - 3.298

= (-6.6457) log(0.0377) - 3.298

= 6.16

EXAMPLE PROBLEM 4.5

Grain-Size Computations Using ASTM and Intercept Methods

The following is a schematic micrograph that represents the microstructure of some hypothetical 

metal.

 Determine the following:

(a) Mean intercept length

(b)  ASTM grain-size number, G using Equation 

4.19a

Solution

(a)  We first determine the magnification of the 

micrograph using Equation 4.20. The scale bar 

length is measured and found to be 16 mm, 

which is equal to 16,000 
m; and because the 

scale bar number is 100 
m, the magnification 

is

M =
16,000 
m

100 
m
= 160*

The following sketch is the same micrograph 

on which have been drawn seven straight lines 

(in red), which have been numbered.

The length of each line is 50 mm, and thus 

the total line length (LT in Equation 4.16) is

(7 lines)(50 mm/line) = 350 mm

Tabulated next is the number of grain-boundary 

intersections for each line:

Number of Grain-
Line Number Boundary Intersections

 1 8

 2 8

 3 8

 4 9

 5 9

 6 9

 7 7

 Total 58

Thus, inasmuch as LT � 350 mm, P � 58 grain-boundary intersections, and the magnifica-

tion M � 160�, the mean intercept length / (in millimeters in real space), Equation 4.16, is 

equal to

/ =
LT

PM

=
350 mm

(58 grain boundary intersections)(160*)
= 0.0377 mm

2 3
1

4

5

6

7

Optical Microscopy

gr
ain

 si
zeC1 =

m1

m1 + m2
* 100 Composition in weight percent 

C�1 =
nm1

nm1 + nm2
* 100 Composition in atom percent 

C�1 =
C1A2

C1A2 + C2A1
* 100 Conversion from weight percent to atom percent 

C1 =
C�1A1

C�1A1 + C�2A2
* 100 Conversion from atom percent to weight percent 

C	1 = °
C1

C1

r1
+

C2

r2

¢ * 103
Conversion from weight percent to mass per unit volume 113

rave =
100

C1

r1
+

C2

r2

Average density of a two-component alloy 

Aave =
100

C1

A1
+

C2

A2

Average atomic weight of a two-component alloy Metallography ∶ Sectioning ⇒ 𝑀𝑜𝑢𝑛𝑡𝑖𝑛𝑔 ⇒ 𝐺𝑟𝑖𝑛𝑑𝑖𝑛𝑔 ⇒ Polishing ⇒ Etching
Hot   Cold نمونه برداری  سمباده زنی

)نوعی پلیمر برای صاف نگه داشتن و 

ایجاد یک قالب نگهدارنده ی نمونه (

)خمیر الماس یا پودر آلومینا روی نمد 

 ریزیم و با دستگاه پولیش میکنیم .( می

ت پایداری کمتر در مرزها بیشتر است ؛ مرزها هستند که در واکنش ها اول لع چون انرژی شبکه به

 وارد میشوند .

 س اگر نمونه را در اسید بزنیم و سپس زیر میکروسکوپ بگذاریم ، مرزها مشخص میشوند .پ

Microscope

Polished and
etched surface

 



s =
F
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P �l
l0

=

Load cell

Extensometer

Specimen

Moving
crosshead

t =
F

A0

Definition of shear stress
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s� = s cos2u

t� = s sinu cosu

Figure 6.7 Force versus interatomic 

separation for weakly and strongly bonded 

atoms. The magnitude of the modulus of 

elasticity is proportional to the slope of each 

curve at the equilibrium interatomic 

separation r0 .
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bonded

Strongly
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F

dF
dr r0

Figure 6.8 Plot of modulus of elasticity 

versus temperature for tungsten, steel, and 

aluminum.
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EXAMPLE PROBLEM 6.2

Computation of Load to Produce Specified Diameter Change

A tensile stress is to be applied 

along the long axis of a cylindri-

cal brass rod that has a diameter 

of 10 mm (0.4 in.). Determine 

the magnitude of the load re-

quired to produce a 2.5 * 10-3-

mm (10-4-in.) change in diame-

ter if the deformation is entirely 

elastic.

Solution

This deformation situation is 

represented in the accompany-

ing drawing.

 When the force F is applied, 

the specimen will elongate in the 

z direction and at the same time 

experience a reduction in diam-

eter, ≤d, of 2.5 * 10-3 mm in the 

x direction. For the strain in the x direction,

Px =
�d
d0

=
-2.5 * 10- 3 mm

10 mm
= -2.5 * 10- 4

which is negative because the diameter is reduced.

 It next becomes necessary to calculate the strain in the z direction using Equation 6.8. The 

value for Poisson’s ratio for brass is 0.34 (Table 6.1), and thus

Pz = -

Px

v
= -

(-2.5 * 10- 4)

0.34
= 7.35 * 10- 4

The applied stress may now be computed using Equation 6.5 and the modulus of elasticity, 

given in Table 6.1 as 97 GPa (14 * 106 psi), as

s = PzE = (7.35 * 10- 4)(97 * 103 MPa) = 71.3 MPa

Finally, from Equation 6.1, the applied force may be determined as

F = sA0 = s ad0

2
b2

p

= (71.3 * 106 N/m2) a10 * 10-3 m
2

b2p = 5600 N(1293 lbf)

F

F

di

li

z

x

z l0

li –  l0
l0

=

x d0

di –  d0
d0

=

=

=

d0

l0

E = 2G(1 + n)

s = EP

t = Gg

Figure 6.10 (a) Typical stress–

strain behavior for a metal showing 

elastic and plastic deformations, the 

proportional limit P, and the yield 

strength sy, as determined using the 

0.002 strain offset method. (b) 

Representative stress–strain behavior 

found for some steels demonstrating 

the yield point phenomenon.
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Figure 6.15 Schematic 

representation showing 

how modulus of resilience 

(corresponding to the 

shaded area) is deter-

mined from the tensile 

stress–strain behavior of a 

material.
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Figure 6.14 Engineering stress–strain behavior for iron at three tem-

peratures.

S
tr

es
s 

(1
0

3
ps

i)

800

600

400

200

0

Strain

S
tr

es
s 

(M
P

a)
120

100

80

60

40

20

0
0 0.1 0.2 0.3 0.4 0.5

–200°C

–100°C

25°C

Resilience PT = ln
li
l0

sT = s(1 + P)

PT = ln (1 + P)

sT = KPn
T

Figure 6.16 A comparison of typical 

tensile engineering stress–strain and 

true stress–strain behaviors. Necking 

begins at point M on the engineering 

curve, which corresponds to M¿ on 

the true curve. The “corrected” true 

stress–strain curve takes into account 

the complex stress state within the neck 

region.
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6.7 TRUE STRESS AND STRAIN

EXAMPLE PROBLEM 6.4

Ductility and True-Stress-at-Fracture Computations

A cylindrical specimen of steel having an original diameter of 12.8 mm (0.505 in.) is tensile-

tested to fracture and found to have an engineering fracture strength sf of 460 MPa (67,000 psi). 

If its cross-sectional diameter at fracture is 10.7 mm (0.422 in.), determine

(a) The ductility in terms of percentage reduction in area

(b) The true stress at fracture

Solution

(a) Ductility is computed using Equation 6.12, as

%RA =
a12.8 mm

2
b2

p - a10.7 mm
2

b2

p

a12.8 mm
2

b2

p

* 100

=
128.7 mm2

- 89.9 mm2

128.7 mm2 * 100 = 30%

(b)  True stress is defined by Equation 6.15, where, in this case, the area is taken as the fracture 

area Af. However, the load at fracture must first be computed from the fracture strength as

F = sf A0 = (460 * 106 N/m2)(128.7 mm2)a 1 m2

106 mm2 b = 59,200 N

Thus, the true stress is calculated as

sT =
F
Af

=
59,200 N

(89.9 mm2)a 1 m2

106 mm2 b
= 6.6 * 108 N/m2 = 660 MPa (95,700 psi)

EXAMPLE PROBLEM 6.5

Calculation of Strain-Hardening Exponent

Compute the strain-hardening exponent n in Equation 6.19 for an alloy in which a true stress 

of 415 MPa (60,000 psi) produces a true strain of 0.10; assume a value of 1035 MPa (150,000 psi) 

for K.

Solution

This requires some algebraic manipulation of Equation 6.19 so that n becomes the dependent 

parameter. This is accomplished by taking logarithms and rearranging. Solving for n yields

n =
log sT - log K

log PT

=
log(415 MPa) - log(1035 MPa)

log(0.1)
= 0.40
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EXAMPLE PROBLEM 6.6

Average and Standard Deviation Computations

The following tensile strengths were measured for four specimens of the same steel alloy:

Sample Number Tensile Strength (MPa)

 1 520

 2 512

 3 515

 4 522

(a) Compute the average tensile strength.

(b) Determine the standard deviation.

Solution

(a) The average tensile strength (TS) is computed using Equation 6.21 with n = 4:

TS =
a

4

i=1
(TS)i

4

=
520 + 512 + 515 + 522

4

= 517 MPa

(b) For the standard deviation, using Equation 6.22, we obtain

s =
£ a

4

i=1
{(TS)i - TS}2

4 - 1
§

1/2

= c (520 - 517)2
+ (512 - 517)2

+ (515 - 517)2
+ (522 - 517)2

4 - 1
d

1/2

= 4.6 MPa

Figure 6.20 presents the tensile strength by specimen number for this example problem 

and also how the data may be represented in graphical form. The tensile strength data 

point (Figure 6.20b) corresponds to the average value TS, and scatter is depicted by error 

bars (short horizontal lines) situated above and below the data point symbol and 

connected to this symbol by vertical lines. The upper error bar is positioned at a 

value of the average value plus the standard deviation (TS + s), and the lower 

error bar corresponds to the average minus the standard deviation (TS - s).

Figure 6.20 (a) Tensile strength data associated with Example Problem 6.6. 

(b) The manner in which these data could be plotted. The data point corresponds 

to the average value of the tensile strength (TS); error bars that indicate the degree 

of scatter correspond to the average value plus and minus the standard deviation 

(TS { s).
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DESIGN EXAMPLE 6.1

Specification of Support-Post Diameter

A tensile-testing apparatus is to be constructed that must withstand a maximum load of 220,000 N 

(50,000 lbf). The design calls for two cylindrical support posts, each of which is to support half of 

the maximum load. Furthermore, plain-carbon (1045) steel ground and polished shafting rounds 

are to be used; the minimum yield and tensile strengths of this alloy are 310 MPa (45,000 psi) and 

565 MPa (82,000 psi), respectively. Specify a suitable diameter for these support posts.

Solution

The first step in this design process is to decide on a factor of safety, N, which then allows 

determination of a working stress according to Equation 6.24. In addition, to ensure that the 

apparatus will be safe to operate, we also want to minimize any elastic deflection of the rods 

during testing; therefore, a relatively conservative factor of safety is to be used, say N = 5. Thus, 

the working stress sw is just

sw =
sy

N

=
310 MPa

5
= 62 MPa (9000 psi)

From the definition of stress, Equation 6.1,

A0 = ad
2
b2

p =
F
sw

where d is the rod diameter and F is the applied force; furthermore, each of the two rods must 

support half of the total force, or 110,000 N (25,000 psi). Solving for d leads to

d = 2
7

F
psw

=
A

110,000 N
p(62 * 106 N/m2)

= 4.75 * 10- 2 m = 47.5 mm (1.87 in.)

Therefore, the diameter of each of the two rods should be 47.5 mm, or 1.87 in.

6.12 DESIGN/SAFETY FACTORS

sw =
sy

N
sd = N�sc

design stress safe stress
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Figure 6.19 Relationships between hardness and 

tensile strength for steel, brass, and cast iron. 

Correlation between Hardness and Tensile Strength

TS (MPa) = 3.45 * HB

TS (psi) = 500 * HB

Computation of Average and Standard Deviation Values

x =
a
n

i=1
xi

n
s = £ a

n

i=1
(xi - x)2

n - 1
§

1/2



DESIGN EXAMPLE 6.2

Materials Specification for a Pressurized Cylindrical Tube

(a)  Consider a thin-walled cylindrical tube having a radius of 50 mm and wall thickness 2 mm 

that is to be used to transport pressurized gas. If inside and outside tube pressures are 20 and 

0.5 atm (2.027 and 0.057 MPa), respectively, which of the metals and alloys listed in Table 6.8 

are suitable candidates? Assume a factor of safety of 4.0.

For a thin-walled cylinder, the circumferential (or “hoop”) stress (s) depends on pres-

sure difference (≤p), cylinder radius (ri), and tube wall thickness (t) as follows:

s =
ri �p

t
 (6.25)

These parameters are noted on the schematic sketch of a cylinder presented in Figure 6.21.

(b)  Determine which of the alloys that satisfy the criterion of part (a) can be used to produce a 

tube with the lowest cost.

Solution

(a)  In order for this tube to transport the gas in a satisfactory and safe manner, we want to 

minimize the likelihood of plastic deformation. To accomplish this, we replace the circum-

ferential stress in Equation 6.25 with the yield strength of the tube material divided by the 

factor of safety, N—that is,
sy

N
=

ri �p

t
And solving this expression for sy leads to

sy =
Nri �p

t
 (6.26)

Table 6.8  Yield Strengths, Densities, and Costs per Unit Mass for Metal 
Alloys That Are the Subjects of Design Example 6.2

Yield Strength,  Density,  Unit mass cost, c
Alloy Sy (MPa) R (g/cm3) ($US/kg)

Steel 325 7.8 1.75

Aluminum 125 2.7 5.00

Copper 225 8.9 7.50

Brass 275 8.5 10.00

Magnesium 175 1.8 12.00

Titanium 700 4.5 85.00

We now incorporate into this equation values of N, ri, ≤p, and t given in the problem state-

ment and solve for sy. Alloys in Table 6.8 that have yield strengths greater than this value 

are suitable candidates for the tubing. Therefore,

sy =
(4.0)(50 * 10- 3 m)(2.027 MPa - 0.057 MPa)

(2 * 10- 3 m)
= 197 MPa

Four of the six alloys in Table 6.8 have 

yield strengths greater than 197 MPa and 

satisfy the design criterion for this tube—

that is, steel, copper, brass, and titanium.

(b)  To determine the tube cost for each alloy, 

it is fi rst necessary to compute the tube 

volume V, which is equal to the product of 

cross-sectional area A and length L—that is,

V = AL

= p(r2
o - r2

i )L (6.27)

Here, ro and ri are, respectively, the tube 

inside and inside radii. From Figure 6.21, 

it may be observed that ro = ri + t, or that

V = p(r2
o - r2

i )L = p[(ri + t)2
- ri

2]L

= p(r2
i + 2rit + t2

- r2
i )L

= p(2rit + t2)L (6.28)

Because the tube length L has not been specifi ed, for the sake of convenience, we assume a 

value of 1.0 m. Incorporating values for ri and t, provided in the problem statement leads to 

the following value for V:

V = p[(2)(50 * 10- 3 m)(2 * 10- 3 m) + (2 * 10- 3 m)2](1 m)

= 6.28 * 10- 4 m3 = 628 cm3

Next, it is necessary to determine the mass of each alloy (in kilograms) by multiplying this value of 

V by the alloy’s density, r (Table 6.8) and then dividing by 1000, which is a unit-conversion factor 

because 1000 mm = 1 m. Finally, cost of each alloy (in $US) is computed from the product of this 

mass and the unit mass cost (c) (Table 6.8). This procedure is expressed in equation form as follows:

Cost = a Vr

1000
b(c) (6.29)

For example, for steel,

Cost (steel) = c (628 cm3)(7.8 g>cm3)

(1000 g>kg)
d (1.75 $US>kg) = $8.60

Cost values for steel and the other three alloys, as determined in the same manner are tabu-

lated below.

Alloy Cost ($US)

Steel 8.60

Copper 41.90

Brass 53.40

Titanium 240.20

Hence, steel is by far the least expensive alloy to use for the pressurized tube.
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Figure 6.21 Schematic representation of a cy-

lindrical tube, the subject of Design Example 6.2.


