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EXAMPLE PROBLEM 2.2

Computation of Attractive and Repulsive Forces between Two lons
The atomic radii of K™ and Br~ ions are 0.138 and 0.196 nm, respectively.

(a) Using Equations 2.9 and 2.10, calculate the force of attraction between these two ions at

2 -
t t t their equilibrium interionic separation (i.e., when the ions just touch one another).
C h a p t er 0 m l c u c U e (b) What is the force of repulsion at this same separation distance?

- - Solution
I n t e r a t 0 m I c B 0 n d I n (a) From Equation 2.5b, the force of attraction between two ions is
AT dr
w Whereas, according to Equation 2.9,
The attractive bonding forces are coulombic Ey = J Fy dr A
A ' E, = -
EA __ ] o0
r = FA dr + FR dr . o ° 0 g 9 9
. : Now, taking the derivation of E, with respect to r yields the following expression for the
Theoretically, the constant A is equal to force of attraction F,:
= EA + ER A
1 _a
A 2447760(|Z1|e)(|22|€) F:@ F _dEa =d< r> = —<j> -4 (212)
dr AT ar dr P 2 i
An analogous equation for the repulsive energy is’ o . . . ;
Fy = F4 + Fg Now substitution into this equation the expression for A (Eq. 2.10) gives
B 1
Ep=—, _ dEa  dEg Fy= ——(1Zile)(|1 Zse 2.13
h dr + dr A 47T€07‘2(| 1| )(l 2| ) ( )
Incorporation into this equation values for e and ¢, leads to
. . o .
Percent ionic character(7%IC) of a bond between elements A and B : = ! Z:1(1602 X 10-°C)|[1 2, (1.602 X 10-1°C
A =) A ) Z2( )
41(8.85 X 10~12 F/m)(r%)
231 X 1073 N-m?)(| Z,])(| Z

_ (EANEAD o)

7

For this problem, r is taken as the interionic separation r, for KBr, which is equal to the
sum of the K* and Br™ ionic radii inasmuch as the ions touch one another—that is,

- y)
%WIC =41 — e_(%)

Fo = rg+ ar rpr— (215)
= 0.138 nm + 0.196 nm
= 0.334 nm

L] LI — 0334 x 10°m

e I njn|

Hybr|d|zed B atom

When we substitute this value for r into Equation 2.14, and taking ion 1 to be K* and ion 2
as Br™ (i.e., Z, = +1 and Z, = —1), then the force of attraction is equal to
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9. V2
3p 3p 3p| five sp3d : (0.334 X 107" m)

Hybridized P atom (b) At the equilibrium separation distance the sum of attractive and repulsive forces is zero
according to Equation 2.4. This means that

Fr=—F, = —(.07 X 107°N) = —2.07 X 107°N
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EXAMPLE PROBLEM 2.3

One of five
sp3d orbitals

Calculation of the Percent lonic Character for the C-H Bond

|
|
|
|
: Hybridized N atom
|
|
|
|

2 .C Compute the percent ionic character (%IC) of the interatomic bond that forms between carbon
. Isolated N atom : and hydrogen.
— One Cl 3p Solution

orbital
The %IC of a bond between two atoms/ions, A and B (A being the more electronegative) is a
function of their electronegativities X, and Xp, according to Equation 2.16. The electronega-
tivities for C and H (see Figure 2.9) are X = 2.5 and Xy = 2.1. Therefore, the %IC is

%IC = {1 — exp[—(0.25)(Xc — Xu)*]} x 100
= {1 — exp[—(0.25)(2.5 — 2.1)?]} x 100
=3.9%
Thus the C—H atomic bond is primarily covalent (96.1%).
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Crystal Structures

Axial Unit
Crystal System Relationships Interaxial Angles Cell Geometry
Simple Body center Face center Base center
Cubic a=b=c a=B=7y=090 BCC Fcc HCP Cubic v v v X
‘e 4R 4R
a a=2R
A=— A=— Hexagonal v X X X
V3 V2 y 33 20
N c— ——a
B 2 Tetragonal v X X X
I
| [ . 0, o, o,
Hexagonal a=b+#c a=p=90y=120° SRINRIE Packing 68% 74% 74% Rhombohedral v X X X
B Factor
e N 2 4 6 Orthorhombic v v v v
Coordination 8 12 12 Monoclinic v v X X
Tetragonal a=b#c a=pB=y=90° . Triclinic v X X X
Y, a
7 N L : .
Rhombohedral a=b=c a=B=y#90° . a Coordination # and lonic Radii
(Trigonal) [
» Coordination # increases with catlon
nlon
-l v
"cation  Coord '.' Zns
Tanion # (zinc blende)
Orthorhombic a#b#c a=B=7y=90 . <0155 2 linear & e tom 5
- .Jl(
a = 0.155-0.225 3 triangular 9 sgﬁﬁln
FCC Stacking Sequence 0.225-0.414 4 tetrahedral ~&& Adamedfmmpgas
+ ABCABC... Stacking Sequence 0410752 6 octahedrl (c(e:;ﬁ:n
AN Hexagonal Close-Packed Structure 0732-10 8  cubic — ’ poShloride)
Monoclinic a#b#c a=7y=90 #pB . (HCP) ot s 5o
* ABAB... Stacking Sequence
b Va LD — number of atoms centered on direction vector
Top layer length of direction vector
Middle layer
+ FCC Unit Cell / number of atoms centered on a plane
Bottom layer PD = area of plane
Triclinic a#b#c a # B # vy #90°
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EXAMPLE PROBLEM 4.1

. 4 (151 - . . -, / .
- sl S Higw, 13 5o s n ey LK 1y o el Number-of-Vacancies Computation at a Specified Temperature

Calculate the equilibrium number of vacancies per cubic meter for copper at 1000°C. The
energy for vacancy formation is 0.9 eV/atom; the atomic weight and density (at 1000°C) for
copper are 63.5 g/mol and 8.4 g/cm®, respectively.

= 2.2 X 10? vacancies/m’

Solution
Figure 4.10 Schematic diagram showing a twin Angle of misalignment This problem may be solved by using Equation 4.1; it is first necessary, however, to determine
plane or boundary and the adjacent atom positions T the value of N—the number of atomic sites per cubic meter for copper, from its atomic weight
(colored circles). \\{( Acy, its density p, and Avogadro’s number N, according to
DS NAP
Figure 4.9 Demonstration of Tilt Angles %j}- Lo Highangl N = Acu (42)
how a tilt boundary having an angle 0, 0,0, RS &/_grailr;gb:unr%d(;ry
of misorie;nt;tic(l)n (9dr'elsultst from an % v U UAA _ (6022 % 107 atoms/mol)(8.4 g/cm?)(10° cm®/m?)
alignment of edge dislocations. 635 gimol
| Small-angle 8 3
External Surf Tilt Boundari Q grain boundary = 8.0 X 10*° atoms/m
ace ies >
T TS XA Thus, the number of vacancies at 1000°C (1273 K) is equal to
. - ‘wist Angle N
Surface 6rain Boundaries " . m —d g,
pre— twist Boundaries " 4 N, = Nexp| ——
efects Twins Plan ‘ X 3 (7 kT
Stacking Faults e, q = (8.0 X 10% atoms/m?) exp[ (09¢v)
%5\7/) S (8.62 X 107 eV/K)(1273 K)
//

Angle of misalignment
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Optical Microscopy

Composition in weight percent

Composition in atom percent Microscope

Conversion from weight percent to atom percent

Polished and

Conversion from atom percent to weight percent etched surface

Conversion from weight percent to mass per unit volume
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Average atomic weight of a two-component alloy

Metallography : Sectioning = Mounting = Grinding = Polishing = Etching

o by Hot Cold 55 03w

EXAMPLE PROBLEM 4.5

= _ L
~N €= ﬁ Mean intercept length (measure of average grain diameter)
© pu(
n
(] n =201 Number of grains per square inch at a magnification of 100X
© pm
g - (2671) M 2 Number of grains per square inch at a magnification other than
=0 M 100 100

measured scale length (converted to microns)

M Magnification " the number appearing by the scale bar (in microns)

G ASTM grain-size number G = —6.6457log € — 3.298

G = —6.63531og ¢ — 12.6

(for € in mm)

(for ¢ inin.)

wad 55 UsoglT 1999 b uloll o)
(- S il 2 OLwd b g 305 0

3R 48 Lo 51 ol 55 9)
(490 5 0 g9 I S Sloust

Grain-Size Computations Using ASTM and Intercept Methods

The following is a schematic micrograph that represents the microstructure of some hypothetical
metal.
Determine the following:

(a) Mean intercept length
(b) ASTM grain-size number, G using Equation
4.19a

Solution

(a) We first determine the magnification of the
micrograph using Equation 4.20. The scale bar
length is measured and found to be 16 mm,
which is equal to 16,000 wm; and because the
scale bar number is 100 wm, the magnification
is

16,000 pm

= 160X
100 pm 60

100 pm

The following sketch is the same micrograph
on which have been drawn seven straight lines
(in red), which have been numbered.

The length of each line is 50 mm, and thus
the total line length (L, in Equation 4.16) is

(7 lines)(50 mm/line) = 350 mm

Tabulated next is the number of grain-boundary
intersections for each line:

Number of Grain-

Line Number Boundary Intersections

1

[©) NN, B NN VS I \8)
~N O © © 0 o &

7
Total 58

Thus, inasmuch as L; = 350 mm, P = 58 grain-boundary intersections, and the magnifica-
tion M = 160X, the mean intercept length ¢ (in millimeters in real space), Equation 4.16, is
equal to

Ly

PM

Z:

_ 350 mm
(58 grain boundary intersections)(160X)

= 0.0377 mm

(b) The value of G is determined by substitution of this value for € into Equation 4.19a;
therefore,
G = —6.6457 log ¢ — 3.298
= (—6.6457) log(0.0377) — 3.298
= 6.16
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Load cell
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o' = o cos?

7' = o sinf cos

I — Iy
0

%EL = ( ) X 100

Ay — A
%RA = <A> X 100
0

Force F

i
| d:
| i , g
| the. magnitude of the load rg <—do—> —
| quired to produce a 2.5 X 107- ' B
! mm (10*in.) change in diame- T ’/}
o = Ee ! ter if the deformation is entirely | |
L elastic. | \
o i
Strongly Solution } }
bonded . 9 q q 9 I I
This deformation situation is | |
(CCZTI: represented in the accompany- L /1
ing drawing. o -
Separation r When the force F'is applied,
E =2G(1+v) the specimen will elongate in the l
z direction and at the same time F
Figure 6.7 Force versus interatomic experience a reductlg)n in diam-
Weakly  geparation for weakly and strongly bonded Sle, Ad; of 2.5 X 10 mm 1n the o
bonded i oms. The magnitude of the modulus of x direction. For the strain in the x direction,
elasticity is proportional to the slope of each
curve at the equilibrium interatomic Ad —25x%103mm 4
. €, =—F—=——_————=-25X10
separation r . dy 10 mm
Temperature (°F) which is negative because the diameter is reduced.
400 0 400 800 1200 1600 It next becomes necessary to galculate the strain in the z direction using Equation 6.8. The
\ T \ \ \ T \ T 170 value for Poisson’s ratio for brass is 0.34 (Table 6.1), and thus
_| _ —4
400*\ 60 € :—3:—M=735X10_4
M - Sy 0.34 '
T B —50 &
< . . . .
= 300 2 The applied stress may now be computed using Equation 6.5 and the modulus of elasticity,
2 —40 £ given in Table 6.1 as 97 GPa (14 X 10° psi), as
s | E:
5 00| Steel 30 & - o = €,E = (735 X 107%)(97 X 10° MPa) = 71.3 MPa
g - 20 § Finally, from Equation 6.1, the applied force may be determined as
] o
=
100 1= Aluminum dO 2
ﬁ — 10 F=0'A0=a'777
IR I N IR A N R -3 \2
0 0 10 X 10~ m
200 0 200 400 600 800 Fi 6.8 . = (71.3 X 10° N/mz)(>q-r = 5600 N (1293 Iby)
Temperature (°C) igure 6.8 Plot of modulus of elasticity 2
versus temperature for tungsten, steel, and
aluminum.
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EXAMPLE PROBLEM 6.2

A tensile stress is to be applied P
along the long axis of a cylindri-

cal brass rod that has a diameter T
of 10 mm (0.4 in.). Determine

Computation of Load to Produce Specified Diameter Change

YRR )
=2l =
) lo
o= dd - Gitdo
T dy do

Figure 6.10 (a) Typical stress—
strain behavior for a metal showing
elastic and plastic deformations, the
proportional limit P, and the yield
strength o, as determined using the
0.002 strain offset method. (b)
Representative stress—strain behavior
found for some steels demonstrating
the yield point phenomenon.

Strain
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/
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Figure 6.15 Schematic
representation showing
how modulus of resilience
(corresponding to the
shaded area) is deter-
mined from the tensile
stress—strain behavior of a
material.
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Figure 6.14 Engineering stress—strain behavior for iron at three tem-

peratures.

TRUE STRESS AND STRAIN
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Figure 6.16 A comparison of typical
tensile engineering stress—strain and
true stress—strain behaviors. Necking
begins at point M on the engineering
curve, which corresponds to M’ on

the true curve. The “corrected” true
stress—strain curve takes into account
the complex stress state within the neck

Stress (103 psi)

Table 6.5 Hardness-Testing Techniques

Formula for

Shape of Indentation

Side View

Hardness Number®
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HARDNESS

HK = 14.2P/P

} Rockwell
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“For the hardness formulas given, P (the applied load) is in kg, and D, d, d;, and / are all in millimeters.
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Source: Adapted from H. W. Hayden, W. G. Moftatt, and J. Wulff, The Structure and Properties of Materials, Vol. 111, Mechanical Behavior. Copyright © 1965 by John

Wiley & Sons, New York.

EXAMPLE PROBLEM 6.4

Ductility and True-Stress-at-Fracture Computations

A cylindrical specimen of steel having an original diameter of 12.8 mm (0.505 in.) is tensile-
tested to fracture and found to have an engineering fracture strength o of 460 MPa (67,000 psi).
If its cross-sectional diameter at fracture is 10.7 mm (0.422 in.), determine

(a) The ductility in terms of percentage reduction in area
(b) The true stress at fracture

Solution

(a) Ductility is computed using Equation 6.12, as
(12.8 mm)2 (10.7 mm>2
-~ |7 —\ = | 7T
2 2

<12.8 mm)2
72 ar

_128.7 mm? — 89.9 mm?
128.7 mm?

% RA = X 100

X 100 = 30%

(b) True stress is defined by Equation 6.15, where, in this case, the area is taken as the fracture
area A, However, the load at fracture must first be computed from the fracture strength as

1 m?
F = oAy = (460 X 106 N/m?)(128.7 mmz)(m) = 59200 N

Thus, the true stress is calculated as

F 59,200 N

or = —— =

A 1 m? )
f 2
89.9 mm
( )<106 mm?

= 6.6 X 10° N/m* = 660 MPa (95,700 psi)

EXAMPLE PROBLEM 6.5

Calculation of Strain-Hardening Exponent

Compute the strain-hardening exponent # in Equation 6.19 for an alloy in which a true stress
of 415 MPa (60,000 psi) produces a true strain of 0.10; assume a value of 1035 MPa (150,000 psi)
for K.

Solution
This requires some algebraic manipulation of Equation 6.19 so that n becomes the dependent
parameter. This is accomplished by taking logarithms and rearranging. Solving for n yields

logor — log K
n=————"
log er
_ log(415 MPa) — log(1035 MPa) 0

log(0.1)




EXAMPLE PROBLEM 6.6

Average and Standard Deviation Computations

The following tensile strengths were measured for four specimens of the same steel alloy:

Sample Number Tensile Strength (MPa)
1 520
2 512
3 515
4 522

(a) Compute the average tensile strength.
(b) Determine the standard deviation.

Solution
(a) The average tensile strength (7S) is computed using Equation 6.21 with n = 4:

4
;(TS)i
4

520 + 512 + 515 + 522
4

TS =

= 517 MPa

(b) For the standard deviation, using Equation 6.22, we obtain
4 12

SA(TS); — TSP

=1

“
|

4-1

(520 — 517)% + (512 — 517)% + (515 — 517)2 + (522 — 517)*1"*
4-1

= 4.6 MPa

Figure 6.20 presents the tensile strength by specimen number for this example problem
and also how the data may be represented in graphical form. The tensile strength data
point (Figure 6.20b) corresponds to the average value T3, and scatter is depicted by error

bars (short horizontal lines) situated above and below the data point symbol and
connected to this symbol by vertical lines. The upper error bar is positioned at a
value of the average value plus the standard deviation (7S + s), and the lower
error bar corresponds to the average minus the standard deviation (7S — s).
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Figure 6.20 (a) Tensile strength data associated with Example Problem 6.6.
(b) The manner in which these data could be plotted. The data point corresponds
to the average value of the tensile strength (7); error bars that indicate the degree

of scatter correspond to the average value plus and minus the standard deviation
(TS * ).

Correlation between Hardness and Tensile Strength

TS(MPa) = 3.45 X HB

TS (psi) = 500 X HB

Computation of Average and Standard Deviation Values
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DESIGN/SAFETY FACTORS

design stress safe stress

p— ’
g, = N'o, Uw:ﬁ

DESIGN EXAMPLE 6.1

Specification of Support-Post Diameter

A tensile-testing apparatus is to be constructed that must withstand a maximum load of 220,000 N
(50,000 Iby). The design calls for two cylindrical support posts, each of which is to support half of
the maximum load. Furthermore, plain-carbon (1045) steel ground and polished shafting rounds
are to be used; the minimum yield and tensile strengths of this alloy are 310 MPa (45,000 psi) and
565 MPa (82,000 psi), respectively. Specify a suitable diameter for these support posts.

Solution

The first step in this design process is to decide on a factor of safety, N, which then allows
determination of a working stress according to Equation 6.24. In addition, to ensure that the
apparatus will be safe to operate, we also want to minimize any elastic deflection of the rods
during testing; therefore, a relatively conservative factor of safety is to be used, say N =5. Thus,
the working stress o, is just

_ 310MPa

s = 62MPa (9000 psi)

From the definition of stress, Equation 6.1,

d\? F
AO—@“—UW

where d is the rod diameter and F is the applied force; furthermore, each of the two rods must
support half of the total force, or 110,000 N (25,000 psi). Solving for d leads to

d=2/-L
7oy,
_ \/ 110,000 N
w(62 X 10° N/m?)

=475X10?m = 47.5mm (1.87 in.)

Therefore, the diameter of each of the two rods should be 47.5 mm, or 1.87 in. &
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Figure 6.19 Relationships between hardness and

tensile strength for steel, brass, and cast iron.



DESIGN EXAMPLE 6.2

Materials Specification for a Pressurized Cylindrical Tube

(a) Consider a thin-walled cylindrical tube having a radius of 50 mm and wall thickness 2 mm
that is to be used to transport pressurized gas. If inside and outside tube pressures are 20 and
0.5 atm (2.027 and 0.057 MPa), respectively, which of the metals and alloys listed in Table 6.8
are suitable candidates? Assume a factor of safety of 4.0.
For a thin-walled cylinder, the circumferential (or “hoop”) stress (o) depends on pres-
sure difference (Ap), cylinder radius (7;), and tube wall thickness (¢) as follows:
r; Ap

o =" (6.25)

These parameters are noted on the schematic sketch of a cylinder presented in Figure 6.21.
(b) Determine which of the alloys that satisfy the criterion of part (a) can be used to produce a
tube with the lowest cost.

Solution

(a) In order for this tube to transport the gas in a satisfactory and safe manner, we want to
minimize the likelihood of plastic deformation. To accomplish this, we replace the circum-
ferential stress in Equation 6.25 with the yield strength of the tube material divided by the
factor of safety, N—that is,

oy _rilAp
N ot
And solving this expression for o, leads to
Nr; Ap
YT

o

(6.26)

Table 6.8 Yield Strengths, Densities, and Costs per Unit Mass for Metal
Alloys That Are the Subjects of Design Example 6.2

Yield Strength, Density, Unit mass cost, ¢
Alloy o, (MPa) p (g/cm>) (SUS/kg)
Steel 325 7.8 1.75
Aluminum 125 2.7 5.00
Copper 225 8.9 7.50
Brass 275 8.5 10.00
Magnesium 175 1.8 12.00
Titanium 700 4.5 85.00

(b) To determine the tube cost for each alloy,

We now incorporate into this equation values of N, r;, Ap, and ¢ given in the problem state-
ment and solve for a,. Alloys in Table 6.8 that have yield strengths greater than this value
are suitable candidates for the tubing. Therefore,

_(40)(50 X 1073 m)(2.027 MPa — 0.057 MPa)
7y 2 % 102 m)

Four of the six alloys in Table 6.8 have
yield strengths greater than 197 MPa and
satisfy the design criterion for this tube —
that is, steel, copper, brass, and titanium.

= 197 MPa

it is first necessary to compute the tube
volume V, which is equal to the product of
cross-sectional area A and length L —that s,

V =AL
= m(2 - AL (627)

Here, r, and r; are, respectively, the tube

inside and inside radii. From Figure 6.21, Figure 6.21 Schematic representation of a cy-
it may be observed that r, = r, + 1, or that lindrical tube, the subject of Design Example 6.2.

V =ma(r2—r)L = w[(r; + 1) — r}]L
=a(r? +2rt + 2 — AL
= 72t + t*)L (6.28)
Because the tube length L has not been specified, for the sake of convenience, we assume a

value of 1.0 m. Incorporating values for r; and ¢, provided in the problem statement leads to
the following value for V:

V = a[(2)(50 X 10 m)(2 X 103 m) + (2 X 1073 m)?](1 m)
=628 X 107*m?® = 628 cm®
Next, it is necessary to determine the mass of each alloy (in kilograms) by multiplying this value of
V by the alloy’s density, p (Table 6.8) and then dividing by 1000, which is a unit-conversion factor

because 1000 mm = 1 m. Finally, cost of each alloy (in $US) is computed from the product of this
mass and the unit mass cost (¢) (Table 6.8). This procedure is expressed in equation form as follows:

Vp \ _
Cost = (1000>(c) (6.29)
For example, for steel,
(628 cm®)(7.8 g/cm?)

Cost (steel) = [ ](1.75 $US/kg) = $8.60

(1000 g/kg)

Cost values for steel and the other three alloys, as determined in the same manner are tabu-
lated below.

Alloy Cost ($US)
Steel 8.60
Copper 41.90
Brass 53.40
Titanium 240.20

Hence, steel is by far the least expensive alloy to use for the pressurized tube. o



