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Preface
This lecture note of Multi-variable calculus is a consequence of a series of forty lectures
given to some undergraduate physics majors. The set up is finite dimensional Euclidean
space Rn. The pre-requisite is quite extensive, but a significant discussion in the begin-
ning (Section 1) covers every single thing required to go through this.

There are two goals of this lecture notes. First one is to teach Multi-variable calculus
meticulously to the Physics majors who are not comfortable to use a mathematical result
blindly without knowing the concepts, rather intrigued to know the actual mathematical
formalisation. And the second one is to give a brief ready-made materials consisting all
the concepts and results of an one semester Multi-variable course for math majors.

The explanations here are completely rigorous and always follow a well-defined set
up, exactly how a typical math course should be. But most of the proofs are omitted
because the purpose is to build concepts and train them to use pure mathematical con-
cepts in problems. A lot of exercises are included in each of the sections. Some of them
are Physics problems which require multi-variable calculus to be solved. Also at the end
an enriched problem section is there to get a deeper insight into the subject. It shows
how some new concepts of Mathematics are defined being motivated by physical phe-
nomenon. It also shows how the proper knowledge of abstract mathematical objects
becomes handy to get to know concepts of Physics.

I have tried to include everything of figures, formulas and words equally with the
development of theories to reach to readers.

Section 1 covers all the pre-requisites carefully. Section 2 defines the concept of
derivative on higher dimension building upon the same in one-dimensional space. Sec-
tion 3 follows section 2 and defines Some important objects which are indispensable
to differentiation. Section 4 and 5 on higher dimensions give idea about a lot of stuffs
which we are familiar with on single variable. Next section gives criterion to find ex-
trema of a real valued function defined on Rn. Chapter 7 has a very crucial role in the
theory of calculus. These theorems give us the proper hypothetical set up to get an
explicit function of less number of variables from an implicit function and to find the
inverse of a function locally. Next one is same as chapter 6 but here we find extrema
given some more restrictions about the domain of the function.

Section 9 defines the concept of integrations over rectangles/boxes on higher di-
mensions. Next section defines a whole new concept of Lebesgue measure and gives a
larger class of integrable functions. In section 11 we define integrations over any other
generalised non-boxes. Section 12 discusses about the Fundamental theorem of Integral
Calculus. Next one gives useful ways to compute integrals.

The last part (Section 13-20) is the most useful one for physicists. This defines in-
tegrals over parametrized curves and surfaces, defines objects like vector-fields, curl,
divergence. Section 16, 19, 20 are pretty similar. They give a relation between the in-
tegral of a function over a curve or surface and the integration of sort of its derivative
over the region enclosed by the same curve or surface. The final section contains some
advanced problems.

Comments and corrections should be sent to archisman.b@niser.ac.in

Archisman Bhattacharjee
August 25, 2020
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Symbols
= - equals, 6= - not equals, < - less than, > - greater than, ≤ - less than or equal to, ≥ -
greater than or equal to, ∀ - for all, ∃ - there exists, ∃! -there exists unique, ∈ - belongs
to, 3 - such that, ∧ - and, ∨ - or, =⇒ - implies, ⇔/iff - if and only if, φ - Empty set, N
- set of natural numbers, Z - set of integers, Q - set of rational numbers, R - set of real
numbers, C - set of complex numbers. A ⊆ B - A is a subset of B or equal to B, A ∪ B -
A union B, A ∩B - Intersection of A and B

1 Pre-requisites

1.1 Sets and functions
Definition 1 (Set) A well defined collection of distinct objects

Example : Set of real numbers, Set of countries in the world.

Union of two sets A and B is A ∪B = {x | x ∈ A ∨ x ∈ B}.
Intersection of two sets A and B is A ∩B = {x | x ∈ A ∧ x ∈ B}.
Cartesian product of two sets A and B is A×B = {(a, b) | a ∈ A ∧ b ∈ B}.

Definition 2 (Function) f is a function from a set A to a set B if

• ∀a ∈ A, f(a) ∈ B

• a = b =⇒ f(a) = f(b)

A is called the domain of the function f and B is the co-domain. f(A) = {b ∈ B | b =
f(ab) for some ab ∈ A} is called the range of A or image of A. f(a) is image of a and
{a ∈ A | f(a) = b} is pre-image of b.
f is one-to-one/injective function if for all x and y ∈ A, x 6= y =⇒ f(x) 6= f(y).
f is surjective/onto function if for all b ∈ B there exists ab ∈ A such that f(ab) = b.
f is bijective function if it is both injective and surjective.

Example : f : R to {0, 1, π} by

f(x) =

{
0 if x ≥ 0.7

π if x < 0.7

is a function.
f : R to R by f(x) = ex is one-to-one function.
f : R to R+ ∪ {0} by f(x) = x2 is surjective function.
f : R to R by f(x) = x3 is bijection.
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1.2 Metric spaces
Definition 3 (Metric Space) A metric space (X, dX) is a set X equipped with a distance
function dX : X ×X → R+ ∪ {0} such that

• ∀ a, b ∈ X, dX(a, b) = 0⇔ a = b

• ∀ a, b ∈ X, dX(a, b) = dX(b, a)

• ∀ a, b, c ∈ X, dX(a, b) + dX(b, c) ≥ dX(a, c).

Example : Set of real numbers is a metric space with the distance d(a, b) = |a− b|.
Take any set S, define a metric d on it by

d(x, y) =

{
1 if x 6= y

0 if x = y

Now S is a metric space with this distance function. This is called discrete metric on S.

1.3 Sequence and it’s limit
A sequence on a metric space X is a function f from N to X. We denote the sequence
as {an}n where f(i) = ai ∀ i ∈ N.
Limit of a sequence {an} on X is l ∈ X if ∀ ε > 0 ∃ nε ∈ N 3 dX(an, l) < ε ∀ n ≥ nε.

Example : In R, define xn =
1

n
. Then the limit of xn is 0.

Series

Let {an}n be a sequence on R. The series Σi∈Nai is the limit of the sequence of partial
sum Sn. The sequence of partial sum is defined by Sn = Σn

i−1ai.
If this limit exists we say the series is convergent, else we say the series is divergent.

1.4 Limit and continuity of a function
f is a function from (X, dX) to (Y, dY ). Limit of f at a point c ∈ X is l ∈ Y (We denote
it by limx→c f(x) = l) if ∀ ε > 0, ∃ δε > 0 3 dX(x, c) < δε =⇒ dY (f(x), l) < ε.
f is continuous at a point α ∈ X if limx→α f(x) = f(α).

Example : f : R to R by f(x) =
1

x
. Then limx→1 f(x) = 1. Define f : R→ R by

f(x) =


sin(x)

x
if x 6= 0

1 if x = 0

Now f is continuous at 0 as limx→0
sin(x)

x
= 1.
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Sequential criterion of limit continuity

f is a function from (X, dX) to (Y, dY ). Limit of f at a point c ∈ X is l ∈ Y (We denote it
by limx→c f(x) = l) if and only if for all sequences {xn}, lim{xn} = c⇒ lim{f(xn)} = l.
Here {f(xn)} can be considered as a sequence {yn} on Y where yi = f(xi) for all i ∈ N.
Similarly f is a function from (X, dX) to (Y, dY ). f is continuous at c ∈ X if and only if
for all sequences {xn}, lim{xn} = c⇒ lim{f(xn)} = f(c).

1.5 Bound of sets
Archemedian Property

We don’t state the property here. Rather we look at the most useful corollary of it which
is equivalent to the main statement.

∀ ε > 0, ∃ nε ∈ N 3 1

nε
< ε i.e. same as saying ∀ ε > 0, ∃ nε ∈ N 3 1

n
< ε ∀ n ≥ nε.

Definition 4 (Upper bound and lower bound) Let S ⊆ R. x ∈ R is an upper bound of
S if s ≤ x ∀ s ∈ S. y ∈ R is a lower bound of S if s ≥ y ∀ s ∈ S.

A set S ⊆ R is bounded above if it has an upper bound. It is bounded below if it has
a lower bound. If a set is both bounded above and bounded below, then the set is called
Bounded set.

Example : The set A = (−5,−2) ∪ [0, π] is bounded above because 5.51 is an upper
bound of it. The set B = (−3.135,∞) is bounded below because −100 is a lower bound
of it. The set C = [0, 1] is bounded because −1 and 1 are its lower and upper bound
respectively.

Definition 5 (Supremum) α is supremum of S ⊆ R if

• α is an upper bound of S.

• x is an upper bound of S =⇒ α ≤ x.

Note that the second axiom in the definition is equivalent to ∀ ε > 0, ∃ s ∈ S 3 α− ε <
s ≤ α.

Example : supA(defined above) = π. supZ doesn’t exist.

Definition 6 (Infimum) β is infimum of S ⊆ R if

• β is an lower bound of S.

• y is an lower bound of S =⇒ β ≥ y.

Note that the second axiom in the definition is equivalent to ∀ ε > 0, ∃ s ∈ S 3 β + ε >
s ≥ β.

Example : inf N = 1. inf Q doesn’t exist.
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1.6 Groups
Definition 7 (Binary operation) A binary operation on a set S is a function f : S×S →
S.

Example : f(a, b) = a+ b on Z.

Definition 8 (Groups) A group (G, ·) is a set G equipped with a binary operation · on it
such that

• Associativity- ∀ a, b, c ∈ G, (a · b) · c = a · (b · c)

• Existence of identity - ∃ e ∈ G 3 a · e = e · a = a ∀ a ∈ G. (e is called identity of G)

• Existence of inverse- ∀ a ∈ G ∃ ba ∈ G 3 a · ba = ba · a = e.(ba is called inverse of a in
G)

Example : Set of Real numbers with addition, Set of all 3× 3 real invertible matrices
with matrix multiplication.

Definition 9 (Abelian groups) A group (G, ·) is abelian if the binary operation is com-
mutative i.e. a · b = b · a ∀ a, b ∈ G

Example : Set of Real numbers with addition, Set of all 7 × 11 real matrices with
addition.

Definition 10 (Field) A field (F,+,×) is a set F equipped with two binary operations +
and × such that

• (F,+) is an abelian group.

• (F \ eF+ ,×) is an abelian group where eF+ is the identity of (F,+).

• a× (b+ c) = a× b+ a× c ∀ a, b, c ∈ F .

Example : (Q,+,×), (R,+,×)

1.7 Vector spaces
Definition 11 (Vector space) A vector space V over a field F is an abelian group (V,+)
equipped with an action of F on V i.e. a map ∗ : F × V → V satisfying the following
axioms1.

Note that (F,+,×) is a field. We write ab in place of a × b. If we write v1 + v2,(where
v1, v2 ∈ V ) then this ” + ” is of (V,+). And if we write a + b,(where a, b ∈ F ) then
this ” + ” is of (F,+,×). We also write av in place of ∗(a, v) where a ∈ F and v ∈ V .
The identity of both (F,+) and (V,+) will be denoted by 0. From the context it will be
understood which identity we are talking about. The identity of (F,×) will be denoted
by 1. Now onwards we are going to use these simplified notations. We call elements of
V as vectors and that of F as scalars.
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Axioms1

• (ab)v = a(bv) ∀ a, b ∈ F ∧ v ∈ V .

• 1(v) = v ∀ v ∈ V .

• (a+ b)v = av + bv ∀ a, b ∈ F ∧ v ∈ V .

• a(u+ v) = au+ av ∀ a ∈ F ∧ u, v ∈ V .

Example : Rn over R is a vector space.

Linear independence

V is a vector space over F . The vectors v1, v2, · · · , vn are said to be linearly independent
if ∀ c1, c2, · · · , cn ∈ F, Σn

i=1civi = 0 =⇒ ci = 0 ∀ i ∈ {1, 2, · · · , n}.
The vectors v1, v2, · · · , vn are said to be linearly dependent if ∃ c1, c2, · · · , cn ∈ F, ∧ ∃ i0 ∈
{1, 2, · · · , n} 3 ci0 6= 0 ∧ Σn

i=1civi = 0.

Example : R2 over R is a vector space. (1, 0) and (3, 7) are linearly independent. But
(1, 0) and (3, 0) are linearly dependent.

Span

Let V be a vector space over F and S ⊆ V . Then Span(S) = {Σn
i=1cisi | ci ∈ F, si ∈

S, n ∈ N}. Observe that Span(S) is a vector space over F for all subset S of V .

Example : Span(π, 0) in R2 over R is x axis.

Basis

Let V be a vector space over F . B ⊆ V is a basis of V if

• The vectors in B are linearly independent.

• Span(B) = V.

The numbers of elements in B is called the dimension of V overF .

Example : {(0, 5), (−π, 0)} is a basis of R2 over R.

Linear Maps

Let V and W be vector spaces over F . f : V → W is linear if

• f(v1) + f(v2) = f(v1 + v2) ∀ v1, v2 ∈ V .

• cf(v) = f(cv) ∀ v ∈ V ∧ c ∈ F .

A linear functional on V is a linear map from V to F . (Note that F is a vector space
over F ).

Example : Consider R2 and R3 over R. Define f : R2 to R3 by f(x, y) = (2x +
3y,−7x, 9y). f is a linear map.
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1.8 Inner product and norm
We won’t define these rigorously here, rather we will see the properties of them. Among
these properties if we take some (i.e.minimal set of axioms) they will uniquely deter-
mine/ well-define the object.

Inner product

Let V be a vector space over R or C. 〈 , 〉 : V × V → R or C is a function, called inner
product. 〈a, b〉 is inner product of vectors a and b. Here are some useful properties of
inner product. Note that u, v, w ∈ V and a ∈ F arbitrary where F = R or C.

• 〈v, v〉 ≥ 0

• 〈v, v〉 = 0⇔ v = 0

• 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

• 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

• 〈u, v〉 = 〈v, u〉

• 〈au, v〉 = a〈u, v〉

• 〈u, av〉 = ā〈u, v〉

Norm

Let V be a vector space over R or C. ‖ · ‖ : V → R ∪ {0} is a function, called norm. For
u, v ∈ V and a ∈ F arbitrary, it has the following properties.

• ‖ v ‖= 0⇔ v = 0

• ‖ av ‖= |a| ‖ v ‖

• ‖ u+ v ‖≤‖ u ‖ + ‖ v ‖

• ‖ uv ‖≤‖ u ‖‖ v ‖

A normed linear space is a vector space with a norm defined on it. An inner product
space is a vector space with an inner product defined on it. An inner product space is a
normed linear space with the norm defined by ‖ v ‖=

√
〈v, v〉

1.9 Hilbert space
Let (X, dX) be a metric space. A sequence {an} is convergent in X if there exists l ∈ X
such that lim{an} = l.
A sequence {an} is Cauchy in X if ∀ ε > 0 ∃ nε ∈ N 3 dX(an, am) < ε ∀ n,m ≥ nε.
Note that, every convergent sequence is Cauchy. But the converse is not necessarily

true. Take X = (0, 1) with d(a, b) = |a− b| and take an =
1

n+ 1
for counterexample.

A metric space (X, dX) is said to be complete it every Cauchy sequence in it has a limit
l ∈ X i.e. every Cauchy sequence is convergent in it.

Let H be a Vector space. It is indeed an inner product space. Observe that H has a
natural metric on it defined by dH(x, y) =‖ x − y ‖=

√
〈x− y, x− y〉. Here −y is the

additive inverse of y ∈ H. If we say H is complete we mean this is complete as this
metric space with this metric.

Definition 12 (Hilbert space) A Hilbert space is a complete inner product space.
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Definition 13 (Banach space) A Banach space is a complete normed linear space.

Example : All the examples of this section will be described in the subsection ′Rn as a metric space′

under the next section.

1.10 Topology of metric spaces
Let (X, dX) be a metric space. An open ball of radius r around a point a ∈ X is B(a, r) =
{x ∈ X | dX(a, x) < r}. Similarly a closed ball of radius r around a point a ∈ X is
B(a, r) = {x ∈ X | dX(a, x) ≤ r}.

Interior points and open sets

Let A ⊆ X. a ∈ A is an interior point of A if ∃ δ > 0 3 B(a, δ) ⊂ A. A subset A of X is
open if ∀ a ∈ A, a is an interior point of A. A subset B of X is closed if X \B is open.

Example : B((0, 0), 1) is open in R2 and (1
2
, −1

3
) is an interior point of it. [3,∞) is

closed in R because (−∞, 3) is open in R.

Limit points and closed sets

Let A ⊆ X. l ∈ X is a limit point of A if ∀ δ > 0, B(l, δ) ∩ A \ {l} 6= φ. A subset A of X
is closed, if all it’s limit points belong to A. A subset B of X is open if X \B is closed.

Example : B((0, 0), 1) is closed in R2 and (−1, 0) is a limit point of it. (3,∞) is open
in R because (−∞, 3] is closed in R.

Some related notations

int(A) is the set of interior points of A. D(A) is the set of limit points of A. Closure of
A = A = A ∪D(A).

Example : In R, int((0, 1]) = (0, 1), (0, 1] = [0, 1] and D(N) = φ.

Rn as a metric space

There are a lot of distance functions that can give Rn a metric space structure. But
for the future requirement we will only focus on Euclidean distance or ln2 norm. Let
x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) ∈ Rn. Then d(x, y) = (Σn

i=1(xi − yi)2)
1
2 . So

in R it becomes |a − b| = d(a, b). As Rn is a vector space over R, it becomes a Hilbert
space with the Euclidean metric which can also be induced from the inner product
defined by 〈x, y〉 = Σn

i=1xiyi.

Bounded sets

Let (X, dX) be a metric space. A ⊆ X is called bounded if ∃ K ∈ R+ 3 d(a1, a2) <
K ∀ a1, a2 ∈ A.

Example : Any subset of a discrete metric space.
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Compact sets in Rn

A subset A of Rn is compact if and only if A is closed and bounded.

Example : B((0, 0), 1) ∪B((1, 1), 1) in R2

Connected sets

Let (X, dX) be a metric space. A set S ⊆ X is disconnected if there exists open sets
Uand V in X such that

• U 6= φ and V 6= φ • U ∩ V = φ • S = (U ∩ S) ∪ (V ∩ S)

A set is called connected if it is not disconnected.

Example : (0, 1) is connected in R and B((0, 0), 1) is connected in R2. N × N is
disconnected in R2.

13



Part I

Differentiation
2 Differentiability on Rn

First we recall the definition of differentiability on R. Let U be an open set in R. f :
U → R is differentiable at a ∈ U if there exists L ∈ R such that

lim
h→0

f(a+ h)− f(a)

h
= L

We call L = f ′(a) i.e. the derivative of f at the point a. So existence of derivative at

a point a is same as saying limh→0
f(a+ h)− f(a)

h
exists. Now let’s think about Rn for

n > 1. The first thing one can observe is that the expression
f(a+ h)− f(a)

h
doesn’t

make sense in Rn because a and h are elements/vectors of Rn and division by h is not
well-defined.

The next thing that naturally comes to our mind is that we can define differentiability

on Rn by f ′(a) = limh→0
‖ f(a+ h)− f(a) ‖

‖ h ‖
. But in that case the new definition must

be consistent with the definition of differentiability on R. Note that according to our

usual definition f(x) = |x| is not differentiable at 0 ∈ R. The limit of
||0 + h| − |0||

h
as h

approaches to 0 doesn’t exist. The left and right hand limits are different. But the limit

of
||0 + h| − |0||

|h|
exists and equal to 1 as h approaches to 0. Hence the newly assumed

definition implies |x| is differentiable at 0, which is not true. This definition is not
consistent with the definition of differentiability on R. We need to think of something
else.

On R we have f ′(a) = limh→0
f(a+ h)− f(a)

h
, which is same as saying

limh→0
f(a+ h)− f(a)− f ′(a)h

h
= 0. Now let us look at the object f ′(a) in a different

way. Observe that any linear function L from R to R is of the form L(x) = cx for some
c ∈ R. Here we can think of a linear function Dfa : R → R by Dfa(x) = f ′(a)x. Now
we state the definition of differentiability on R in the following way.

Let U be an open set in R. f : U → R is differentiable at a ∈ U if there exists a linear
map Dfa : R→ R such that

lim
h→0

f(a+ h)− f(a)−Dfa(h)

|h|
= 0

The only non-trivial thing with this newly written definition is the modulus of h in
its denominator. We can describe this using ε − δ definition of limit of a function.

limh→0
f(a+ h)− f(a)−Dfa(h)

h
= 0 =⇒ for all ε > 0 there exists δ > 0 such that

|h| < δ =⇒ | f(a+ h)− f(a)−Dfa(h)

h
|< ε =⇒ | f(a+ h)− f(a)−Dfa(h)

|h|
|< ε. So

14



now we have limh→0
f(a+ h)− f(a)−Dfa(h)

|h|
= 0.

Our next goal is to trace the same idea in the definition of differentiability on Rn.

Definition of differentiability on higher dimension
U is an open subset of Rn. f : U → Rm. We say f is differentiable at a point a ∈ U ⊆ Rn

if there exists a linear map Dfa : Rn → Rm such that

lim
h→0

f(a+ h)− f(a)−Dfa(h)

‖ h ‖
= 0

The linear map Dfa is called the derivative of f at a. Note that, derivative at a point is
not a number any more, it’s a linear map. We know that if T is a linear transformation
from Rn to Rm then T (v) = Av for some m × n matrix A and for all v ∈ Rn(Proved
later[Exercise 15]). Here vectors of Rn are considered as column vectors or n × 1
column matrix. Similarly for Rm. Now we can visualize how the dimensions match
after the matrix multiplication. i.e. [T (v)]m×1 = [A]m×n[v]n×1. So now we will try to
find the matrix of linear transformation Dfa. If n = m = 1 this is just an 1 × 1 matrix
or number. We will talk about this matrix again when we will learn Jacobian. Some
examples will be worked out then as well.

Proposition 14 U is an open subset of Rn. f : U → Rm and f is differentiable at a point
a ∈ U . Then f is continuous at a.

Proof(Hint). Since f is differentiable, ‖ f(a + h) − f(a) ‖= Dfx0(h)+ ‖ h ‖ Ex0(h) for
some limh→0Ex0(h) = 0. Now whenever ‖ h ‖< δ, we will have ‖ h ‖ (Ex0(h)+ ‖ Dfx0 ‖
) < ε. (Using the fact that Norm of a linear map is finite on a finite dimensional vector
space.) [Defined below]
Norm of a linear map T (: Rn → Rm) =

‖ T ‖= sup
v∈Rn\{−→0 }

‖ T (v) ‖
‖ v ‖

= sup
v∈Rn∧‖v‖=1

‖ T (v) ‖
‖ v ‖

Exercise 15 Let T is a linear map from Rn to Rm. Show that

1. T (v) = ATv for some m × n matrix AT and for all v ∈ Rn where vectors of Rn are
considered as column vectors or n× 1 column matrix. AT is called the matrix of the
linear map T .

2. ‖ T (v) ‖≤‖ T ‖‖ v ‖

Hint. For the first part fix basis {ei}ni=1 and {fj}mj=1 of Rn and Rm respectively. Write
T (ei) ∈ Rm in terms of fi s, like T (ei) = Σm

j=1ajifj. Then write v = Σn
i=1viei. Now

use linearity of T and write T (v) using coefficients aij and basis fj. Second part is
immediate from the definition of ‖ T ‖.

Exercise 16 Let f is a linear function from Rn to Rm. Show that f is differentiable at any
point of Rn. (Hint : Dfa = f)
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Let U, V,W be vector spaces over F . Then U × V is a vector space over F .(with compo-
nent wise addition and scalar multiplication in each component). f : U × V → W . For
u ∈ U , define fu : V → W by fu(v) = f(u, v). Similarly define fv : U → W for all v ∈ V .
Now f is called bilinear if fu and fv are linear for all u ∈ U and v ∈ V .

Exercise 17 Let f is a bilinear function from Ra × Rb to Rc. Show that f is differentiable
at any point of Ra × Rb. (Hint : Df(a,b)(t1, t2) = f(a, t2) + f(t1, b+ t2))

Exercise 18 Norm of a linear map is finite on a finite dimensional vector space.

Hint. An n dimensional vector space is same as Rn. So without loss of generality assume
T : Rn → Rm. Then use the fact that T (v) = Av where A is a m × n matrix. Try to see
‖ T ‖ in terms of entries of A. As A has finitely many entries take the maximum among
them and find some bound for the norm.

3 Directional and partial derivative, Jacobian

3.1 Directional derivative

Assume when h approaches to 0 the quantity
f(a+ h)− f(a)

h
has a limit in R. We can

talk about left hand and right hand limit depending on h > 0 or h < 0. In R we can
approach a only through two different paths. But if a ∈ Rn for some n > 1, the situation
is different. There we can approach a through infinitely many different paths.

There can be a case when limh→0
f(a+ h)− f(a)

h
doesn’t exist but left and right

hand limit exist separately. If and only if they are equal, we have the overall existence
of limit at a. Similarly in Rn we can define a notion of directional derivative for each of
the infinitely many directions like left and right derivative on R.

Definition 19 (Directional derivative) Let U be an open subset of Rn. f : U → Rm and
x0 ∈ U . Let u ∈ Rn such that ‖ u ‖= 1. Then the derivative of f at x0 to the direction of u

is Duf(x0) = limh→0
f(x0 + hu)− f(x0)

h
if the limit exists.

Note that Duf(x0) = Dfx0(u) i.e. the directional derivative of f at x0 to the direction
of u is same as the value of derivative of f at x0 evaluated at u. This is an important
result we will need later. Proving this is easy by the straightforward use of definitions
of derivative and directional derivative.

3.2 Partial derivative
As Rn is a vector space of dimension n, it has a basis e1, e2, · · · en. Here e1 = (1, 0, · · · , 0),
e2 = (0, 1, 0, · · · , 0) and so on.
Let U be an open subset of Rn. f : U → Rm and x0 ∈ U . Partial derivatives of f at x0

are nothing but De1f(x0), De2f(x0), · · · , Denf(x0). We denote Dekf(x0) by
∂f

∂xk
(x0).
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Example

Define f : R2 → R by f(x, y) = 2x+ 3y2.

Now De1f(x0, y0) = limh→0
f [(x0, y0) + h(1, 0))]− f(x0, y0)

h
= limh→0

2h

h
= 2. Hence we

have
∂f

∂x
(x0, y0) = 2. The object

∂f

∂xk
can be informally considered as derivative of f

with respect to variable xk where other variables are constant in the expression of f .

Similarly, one can check
∂f

∂x
(x0, y0) = 6y0 for this example.

3.3 Jacobian
Lemma 20 Let V is a finite dimensional inner product space. Let e1, e2, · · · , en be an
orthonormal basis of V . i.e. 〈ei, ej〉 = 0 ∀ i 6= j and 〈ei, ei〉 = 1 ∀ i. Then for all vector
v ∈ V , v = Σn

i=1〈v, ei〉ei.

Proof. As {ei}ni=1 is a basis of V , let v = Σn
i=1viei. Now we see 〈v, ei〉 = vi. �

Now onwards whenever we will talk about Rn, we will assume the standard or-
thonormal basis (denoted by {e(n)

i }ni=1). Here e
(n)
i is an n-tuple with 1 at ith place

and 0 at the rest of the places. If f : Rn → Rm, f(x) ∈ Rm can be written as
(f1(x), f2(x), · · · , fm(x)). Now we define natural projections πi : Rm → R by v 7→
〈v, e(m)

i 〉 which is same as saying πi(a1, a2, · · · , am) = ai. So fi s can be considered as
functions from Rn to R by fi = πi◦f . Assume f is differentiable. Recalling the technique
used in Exercise 15 and using Lemma 20 we understand the entries of the matrix of
the linear map DfxO and the following is the matrix of it.

A =


〈Dfx0(e

(n)
1 ), e

(m)
1 〉 〈Dfx0(e

(n)
2 ), e

(m)
1 〉 · · · 〈Dfx0(e

(n)
n ), e

(m)
1 〉

〈Dfx0(e
(n)
1 ), e

(m)
2 〉 · · · 〈Dfx0(e

(n)
n ), e

(m)
2 〉

...
... . . . ...

〈Dfx0(e
(n)
1 ), e

(m)
m 〉 · · · 〈Dfx0(e

(n)
n ), e

(m)
m 〉


Lemma 21 With everything well-defined, 〈Dfx0(e

(n)
i ), e

(m)
j 〉 =

∂fj
∂xi

(x0)

Proof(Hint).
Use the definition of partial derivative and the fact that Duf(x0) = Dfx0(u).

Let U be an open subset of Rn. f : U → Rm. Let f is differentiable at a point a ∈ U .
Jacobian of f is a m× n matrix such that evaluation of this matrix at a gives the matrix
of the linear map Dfa. We denote it by J f and evaluation of it at a by J f(a). By

evaluation we mean the entry
∂fj
∂xi

evaluated at a is
∂fj
∂xi

(a).
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J (f) =



∂f1

∂x1

∂f1

∂x2

· · · ∂f1

∂xn
∂f2

∂x1

· · · ∂f2

∂xn
...

... . . . ...
. . .

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn−1

∂fm
∂xn


If m = 1 i.e. f : Rn → R, we denote J f by ∇f (called gradient of f) and

∇f = [
∂f

∂x1

,
∂f

∂x2

, · · · , ∂f
∂xn

]

Example

Define f : R2 → R3 by f(x, y) = (x, y, x2 + y2). Let h = (h1, h2). Fix any point (x0, y0) ∈
R2.

So J f(x0, y0) =


∂

∂x
(x)

∂

∂y
(x)

∂

∂x
(y)

∂

∂y
(y)

∂

∂x
(x2 + y2)

∂

∂y
(x2 + y2)

 (x0, y0) =

 1 0
0 1

2x0 2y0

.

Now, limh→0

f((x0, y0) + (h1, h2)− f(x0, y0)−Df(x0,y0)(h1, h2)√
h2

1 + h2
2

=

limh→0

 h1

h2

2x0h1 + 2y0h2 + h2
1 + h2

2

−
 1 0

0 1
2x0 2y0

(h1

h2

)
√
h2

1 + h2
2

= limh→0

 0
0√

h2
1 + h2

2

 =

0
0
0


This shows us how understanding the matrix of the linear map using Jacobian helps

us to show the differentiability of a given function.

Proposition 22 If f : Rn → Rm is differentiable at a, all it’s partial derivatives
∂f

∂xi
(a)

exist.

Proof : Trivial and left as an exercise to the reader. �
Note that the converse of Proposition 22 is not true in general. Following is the counter
example.

Exercise 23 Define f : R2 to R by

f(x, y) =


x3

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Prove that all the partial derivatives of f at (0, 0) exist but f is not differentiable at (0, 0).
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Hint. Showing the existence of partial derivatives is straightforward. For showing it’s
not differentiable assume on the contrary it is. Then there exists a linear map l : R2 to
R such that

lim
h→0

f(a+ h)− f(a)− l(h)

‖ h ‖
= 0

. Here a = (0, 0). Let h = (h1, h2). So we have f(h1, h2) = f(0, 0) + l(h1, h2) +
E(h1, h2)

√
h2

1 + h2
2(∗) for some limh→0E(h) = 0. Use equation (∗) to calculate the val-

ues of l(h, 0), l(0, h), l(h, h). Now use linearity of l and take limit h approaches to 0 both
side. Reach a contradiction.

The next theorem gives us a sufficient condition for which existence of all partial
derivatives at a point implies differentiability at that point.

Theorem 24 U is a open set in Rn. f : U → Rm is differentiable at x0 ∈ U . All the

partial derivatives
∂f

∂xi
of f exist in some small neighbourhood of x0. Out of n many

partial derivatives at x0, any n − 1 of these are continuous at x0. i.e. ∃ i1, i2, · · · , in−1 ∈
{1, 2, · · · , n} 3 ∂f

∂xi1
,
∂f

∂xi2
, · · · , ∂f

∂xin−1

are continuous at x0. Then f is differentiable at x0.

Proof(Hint): Let {ei}ni=1 be the usual orthonormal basis of Rn. WLOG m = 1 (It will
be evident from the method of the proof that the same way we can prove for m > 1).

WLOG assume
∂f

∂xi
is continuous for i ∈ {2, 3, · · · , n}. (If

∂f

∂xi
is not continuous we take

a new basis (f1, f2, · · · , fn) where f1 = ei and rest n− 1 of ei s are f2 to fn). So we have
to show

lim
H→0

f(x0 +H)− f(x0)− J f(x0)(H)

‖ H ‖
= 0

. Let u =
H

‖ H ‖
and ‖ H ‖= h. So H = hu and assume u = (u1, u2, · · · , un). Write

f(x0 +H)− f(x0) = Σn
k=1(f(x0 + Σk

i=1huiei)− f(x0 + Σk−1
i=1 huiei)) · · · (∗)

and
J f(x0)(H) = Σn

k=1hui
∂f

∂xi
(x0) · · · (∗∗)

Now to calculate f(x0 + H)− f(x0)− J f(x0)(H) in numerator use the summand wise

subtraction of (∗)− (∗∗). Then take limit h goes to 0 and use continuity of
∂f

∂xi
at x0.

4 Chain rule, Mean value theorem
In R we use a formula (f ◦ g)′(x) = f ′(g(x))g′(x) if f and g are differentiable on R. Now
we will formalise and generalise this concept in higher dimension.
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4.1 Chain rule
U and V are open subsets of Rn and Rm respectively. Let g : U → Rm and g(U) ⊆ V .
Now f : V → Rk. So we can now define ψ = f ◦ g : U → Rk. If g is differentiable at
x0 ∈ U and f is differentiable at g(x0) ∈ V , then ψ is differentiable at x0 ∈ U and

Dψx0 = Dfg(x0)Dgx0

Proof : Trivial using the definition of derivative or the concepts of Jacobian. �

4.2 Mean value theorem (MVT)
MVT on R

Let f : (a, b) → R be differentiable on (a, b). Then for all x1, x2 ∈ (a, b) there exists
c ∈ (x1, x2) such that f(x1)− f(x2) = f ′(c)(x1 − x2).
Note that in R if we say c is in between x1 and x2, it makes sense. But in Rn we need
something analogous so that this will be well defined.

MVT on Rn

Let U be open in Rn. f : U → Rm is differentiable on U . Let x, y ∈ U such that
tx + (1 − t)y ∈ U for all t ∈ [0, 1]. This essentially says that the line segment joining x
and y lies inside U . Then for all v ∈ Rm there exists tv ∈ [0, 1] such that 〈v, f(y)−f(x)〉 =
〈v,Dfzv(y−x)〉 where zv = tvx+ (1− tv)y i.e. there exists a point zv in the line segment
joining x and y such that the above equality holds.

Proof(Hint) : Using open set U find a suitable interval I on R so that if x, y ∈ I then
tx+ (1− t)y ∈ I ∀ t ∈ [0, 1]. The function F : [0, 1]→ R by F (t) = 〈v, f(x+ t(y− x))〉 is
well-defined. Now using chain rule observe how DF will look like in terms of Df and
then apply MVT (on R) to the function F and for the points 0 and 1.

Exercise 25 Define f : R2 → R3 by (x, y) 7→ (x, y2, x + 3y). Show f is differentiable on
B((0, 0), 2) and find a suitable zv (Notation from the previous section) for x = (0, 1) and
y = (1, 0) (Hint : For first part use linearity of f and exercise 16, second part is just
calculation)

Theorem 26 Let U be open and connected in Rn. f : U → Rm is differentiable on U and
for all x ∈ U, Dfx = 0 if and only if f is constant.

Proof(Hint) : Showing the backward direction is straightforward. The forward direc-
tion is an application of MVT and the fact (exercise 27). Fix x0 ∈ U and consider
A = {x ∈ U | f(x) = f(x0)}. Show that A is both open and closed subset of U and from
exercise 27 we have A = U .

Exercise 27 Let X be a metric space with some distance function. A ⊆ X. A is a closed
set as well as an open set. Show that A = φ or X. (This is an advanced exercise, if you are
unable to prove it, take this statement for granted)

20



5 Higher order derivatives, Taylor’s theorem

5.1 Higher order derivatives
First talking about R we see, there is a meaning of f ′(c) for a point c ∈ R. But now we
will consider a function f ′ : U → R by x 7→ f ′(x) where U is the set of points where f is
differentiable. After that we talk about differentiability of the function f ′ to get f ′′. Let
L(Rn,Rm) be the set of all linear transformations from Rn to Rm. This can be identified
with set of all m × n matrices because every linear transformation has it’s matrix and
for every matrix A, we have a linear transformation v 7→ Av. Again this m× n matrices
can be identified with Rmn by an obvious map i.e. writing down all the entries of the
matrix one by one as a mn tuple.

Let U is open in Rn and f : U to Rm is differentiable on U . So now onwards for such
a function f , and for an element a ∈ U , we look at the object Dfa as an element of Rmn.
(by the identification described earlier). We define Df : U → Rmn by Df(x) = Dfx.
Now we can talk about the differentiability of that function. Note that from now we
will use the notation Dfa and Df(a) simultaneously depending on what the context
demands. Both of them are the same object represented by two different notations.

So second derivative of f at a is derivative of Df at a if it exists. i.e. D2fa = D(Df)a
In this way we can define Dn+1fa = D(Dnf)a.

5.2 Hessian
Now we can also define second order partial derivatives by

∂2f

∂xi∂xj
=

∂(
∂f

∂xj
)

∂xi
=

∂

∂xi
(
∂f

∂xj
)

Let U is open in Rn and f : U → R is differentiable at a. Then the Hessian of f at
a = Hf(a) is the following matrix evaluated at a. By evaluation we mean the entry
∂2f

∂xi∂xj
gives

∂2f

∂xi∂xj
(a).

Hf =



∂2f

∂x1∂x1

∂2f

∂x2∂x1

· · · ∂2f

∂xn∂x1
∂2f

∂x1∂x2

· · · ∂2f

∂xn∂x2
...

... . . . ...
. . .

∂2f

∂x1∂xn

∂2f

∂x2∂xn
· · · ∂2f

∂xn−1∂xn

∂2f

∂xn∂xn


5.3 Commutativity of second order partial derivatives

For all i 6= j we have
∂2f

∂xi∂xj
=

∂

∂xi
(
∂f

∂xj
) and

∂2f

∂xj∂xi
=

∂

∂xj
(
∂f

∂xi
). Now the question

natural to ask is whether they are equal. The answer is obviously no. But it is highly non-
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trivial. The following exercise is the counterexample for the commutativity of second
order partial derivatives.

Exercise 28 f : R2 → R by

f(x, y) =


xy(x2 − y2)

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Show that
∂

∂x
(
∂f

∂y
)(0, 0) 6= ∂

∂y
(
∂f

∂x
)(0, 0) (Hint. Calculate to show one of them is 1 and

another one is −1).

Now through next two theorems state what condition make them commute. Note
that the proofs are purely analytical and not that trivial. We have omitted the proofs.

Interested readers may try to finish it on their own. Also we will use the notation
∂2f

∂x2
i

for
∂2f

∂xi∂xi
.

Theorem 29 (Claircut’s theorem) Let U is open in Rn and f : U → R is differentiable

at x0. Assume i 6= j. In some open ball around x0
∂f

∂xi
,
∂f

∂xj
and

∂2f

∂xi∂xj
exist. And

∂2f

∂xi∂xj

is continuous at x0. Then
∂2f

∂xj∂xi
(x0) exists and

∂2f

∂xj∂xi
(x0) =

∂2f

∂xi∂xj
(x0)

Theorem 30 Let U is open in Rn and f : U → R is differentiable at x0. Assume i 6= j. In

some open ball around x0
∂f

∂xi
,
∂f

∂xj
exist and they are differentiable at x0. Then

∂2f

∂xi∂xj
(x0)

and
∂2f

∂xj∂xji
(x0) exist and

∂2f

∂xi∂xj
(x0) =

∂2f

∂xj∂xi
(x0).

Exercise 31 Define f : R2 → R2 by f(x, y) = (−y, x). Calculate
∂2f

∂x∂y
(1, 2) and

∂2f

∂y∂x
(1, 2).

Also calculate D2f(1,2) if it exists.

5.4 Taylor’s theorem
Taylor’s theorem on R

U is open in R. f is differentiable upto order ≤ k on U . Let x, y ∈ U such that [x, y] ⊂ U .
Then there exists z ∈ [x, y] such that f(y)− f(x) =

(y−x)f ′(x)+
(y − x)2

2
f ′′(x)+

(y − x)3

3!
f ′′′(x)+ · · ·+ (y − x)k−1

(k − 1)!
f (k−1)(x)+

(y − x)k

k!
f (k)(z)
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Some useful notations

U is open in Rn and f : U → R. Let t = (t1, t2, · · · , tn)tr ∈ Rn. By writing tr we mean
the vector is not a row, rather a column. We have already seen that we always consider
vectors of Rn as n × 1 column matrix. Now for x0 ∈ Rn we denote as follows (if they
exists)

f ′(x0, t) = ∇f(x0)t = Σn
i=1

∂f

∂xi
(x0)ti

f ′′(x0, t) = Σn
i=1Σn

j=1

∂2f

∂xi∂xj
(x0)tjti

f ′′′(x0, t) = Σn
i=1Σn

j=1Σn
k=1

∂3f

∂xi∂xj∂xk
(x0)tktjti

In such way we can have a notion of fk(x0, t). Next thing we define formally is the line
joining two vectors x and y ∈ Rn. Define [x, y] = {λx+ (1− λ)y | λ ∈ [0, 1]}.

Taylor’s theorem on Rn

U is open in Rn and f : U → R such that on U all its partial derivatives exist upto order
< k and they are differentiable. Let x, y ∈ U such that [x, y] ∈ U . Then there exists
z ∈ [x, y] such that f(y)− f(x) =

f ′(x, y−x)+
1

2
f ′′(x, y−x)+

1

3!
f ′′′(x, y−x)+ · · ·+ 1

(k − 1)!
f (k−1)(x, y−x)+

1

k!
f (k)(z, y−x)

Proof (Hint): Using open set U find a suitable interval I on R so that if x, y ∈ I
then tx+ (1− t)y ∈ I ∀ t ∈ [0, 1]. The function F : [0, 1]→ R by F (t) = f(x+ t(y− x) is
well-defined. Now observe how f (n)(x, y − x) will look like in terms of f (n)(t) and then
apply Taylor’s theorem (on R) to the function F and for the points 0 and 1.

Exercise 32 Define f : R3 to R by f(x, y, z) = sin(x) + ey + z. Show that all order partial
derivatives of f exist. And expand this around (0, 0, 0).

6 Maxima, Minima
Exercise 33 U is open in Rn and f : U → R is differentiable on U . a ∈ U . Assume there
exists δ > 0 such that f(x) ≥ f(a) for all x ∈ B(a, δ) ⊆ U . Prove that Df(a) = 0. (i.e. the
derivative at a local minima of a function is 0)

Hint : Look at the Jacobian or gradient of f . We show each entry of them must be 0.
f is differentiable hence partial derivatives exist. So both the left hand and right hand

limit of the quantity
f(a+ he

(n)
i )− f(a)

h
as h approaches to 0 must be equal. But for

h > 0 this is > 0 and for h < 0 this is < 0. So the limit must be 0.

In this chapter we will learn to use some similar techniques for finding maxima, minima
we use in R. From Exercise 33 it is evident that the derivative of a function at its local
maxima and minima is 0.
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Definition 34 (The class Ck) f : Rn → R. We say f is of class Ck or f ∈ Ck(Rn) if all the
partial derivatives of f exist upto order ≤ k and they are continuous.

Exercise 35 Prove or disprove : If f : R → R is differentiable upto order ≤ k, then
f ∈ Ck(R)

Hint : Give a counter example by defining

f(x) =

xk+1sin(
1

x
) if x 6= 0

0 if x = 0

Note that the same thing can be shown for f : Rn to R by taking this example in one
component and taking the rest all to be 0.

Definition 36 (Smooth function) f : Rn → R. We say f is smooth if f ∈ Ck(Rn) for all
k ∈ N.

Our discussions of maxima, minima are limited to all those functions which are of
class C2. U is open in Rn. f : U → R. We say f has a local minima at a ∈ U if there exists
δ > 0 such that f(x) ≥ f(a) for all x ∈ B(a, δ) ⊆ U . Similarly f has a local maxima at
b ∈ U if there exists κ > 0 such that f(x) ≤ f(b) for all x ∈ B(b, κ) ⊆ U . x0 ∈ U is a
saddle point of f if for all ε > 0 there exists yε, zε ∈ B(x0, ε) such that f(yε) > f(x0) and
f(zε) < f(x0). x0 ∈ U is a critical/stationary point of f if Df(x0) = 0.

Let Hf be the Hessian of f , for any h ∈ Rn define

Qx0(h) = htr[Hf(x0)]h

where h is a column vector of size n and htr is a row vector of size n.
Recall the maxima-minima criterion in R

• f ′(a) = 0 and f ′′(a) > 0⇒ f has a local minima at a ∈ R.

• f ′(a) = 0 and f ′′(a) < 0⇒ f has a local maxima at a ∈ R.

Now we proceed to find some similar criterion in Rn

Theorem 37 U is open in Rn. f : U → R. There exists x0 ∈ U such that Df(x0) = 0.
Then

• Qx0(h) > 0 for all h ∈ Rn ⇒ x0 is a local minima of f .

• Qx0(h) < 0 for all h ∈ Rn ⇒ x0 is a local maxima of f .

• There exists h1, h2 ∈ Rn such that Qx0(h1) > 0 and Qx0(h2) < 0 ⇒ x0 is a saddle
point of f .
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Now we will find some other useful criterion as well. Let T be a linear transformation
from Rn to Rn. We say λ ∈ R is an eigen value of T if there exists v ∈ Rn such that
T (v) = λv. v is called the eigen vector of T corresponding to the eigen value λ. Now as
set of linear transformations from Rn to Rn i.e. L(Rn,Rn) is nothing but set of n×n real
matrices, we can define the eigen value and eigen vector of a matrix in the same way.
(Matrix A corresponds to the linear transformation T (v) = Av). We define determinant
of a linear transformation/a matrix by det(A) = product of all eigen values of A. Now
we define two more quantities which will help later to compute maxima and minima of
a given function

λ
(x0)
min = inf

h∈Rn∧‖h‖=1
Qx0(h) and λ(x0)

max = sup
h∈Rn∧‖h‖=1

Qx0(h)

Lemma 38 λ
(x0)
min is the minimum eigen value of the matrix Hf(x0) and λ(x0)

max is the maxi-
mum eigen value of the matrix Hf(x0)

Since f ∈ C2(Rn) we have the function Qx0 : Rn → R by h 7→ Qx0(h) continuous.
Now it is evident that Qx0(h) > 0 for all h ∈ Rn ⇔ λ

(x0)
min > 0.

From the definition of λ(x0)
min we just get that this quantity is ≥ 0. To justify the fact

that λ(x0)
min 6= 0 we need to use the continuity of Qx0. We see {h ∈ Rn :‖ h ‖= 1} is

compact in Rn. So continuous image of a compact set is compact in R. Hence the
infimum will belong to the set of images. (Exercise 39)

Similarly we have Qx0(h) < 0 for all h ∈ Rn ⇔ λ
(x0)
max < 0. Also ∃ h1, h2 ∈ Rn such

that Qx0(h1) > 0 and Qx0(h2) < 0⇔ λ
(x0)
min < 0 < λ

(x0)
max.

Exercise 39 Let f : Rn → R be a continuous function. If K is a compact subset of
Rn, show that f(K) is compact subset of R. If F is a compact subset of R, show that
supF, inf F ∈ F . (Hint : Compact sets are closed and bounded and vice-versa. Then use
the definition (of closed set) which uses limit point)

Theorem 40 (Restating maxima-minima using eigen values of Hessian) U is open in Rn.
f : U → R. There exists x0 ∈ U such that Df(x0) = 0. λ(x0)

min and λ(x0)
max are the minimum

eigen value and maximum eigen value of the matrix Hf(x0) respectively. Then

• λ(x0)
min > 0⇒ x0 is a local minima of f .

• λ(x0)
max < 0⇒ x0 is a local maxima of f .

• λ(x0)
min < 0 < λ

(x0)
max ⇒ x0 is a saddle point of f .

Concept of principal minor
Let A be an n × n matrix. For 1 ≤ k ≤ n we define its kth principal minor Ak by taking
the first k rows and columns of A. i.e. if A = (aij)n×n then Ak is a k × k matrix defined
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by Ak = (aij)k×k.

A =


a11 a12 · · · a1n

a21 · · · a2n
...

... . . . ...
. . .

an1 an2 · · · a(n)(n−1) ann


n×n

Ak =


a11 a12 · · · a1k

a21 · · · a2k
...

... . . . ...
ak1 ak2 · · · akk


k×k

Theorem 41 U is open in Rn. f : U → R. There exists x0 ∈ U such that Df(x0) = 0. Let
A denote the matrix Hf(x0). For any matrix M, Mk denotes the kth principal minor of M
and det(M) denotes the determinant of it. Let n̆ denote the set of all natural numbers ≤ n.
Then

• There exists k ∈ ˘n/2 such that det(A2k) < 0⇔ x0 is a saddle point of f .

• For all k ∈ n̆, det(Ak) > 0⇔ x0 is a local minima of f .

• For all k ∈ n̆, (−1)kdet(Ak) > 0⇔ x0 is a local maxima of f .

• det(An) = 0⇔ x0 is a degenerate critical point.

Exercise 42 For each of the following functions find all its critical points, local maxima,
local minima and saddle points using any of theorems − 37, 40, 41 to your accordance. If
you find a degenerate critical point, these theorems won’t be applicable any more. In that
case use some basic analysis or inequalities to find whether it is maxima or minima or
saddle point.

• f1 : R2 → R by f1(x, y) = x4 + x2y + y2

• f2 : R2 → R by f2(x, y) = 12x3 + y3 + 12x2y − 75y

• f3 : R3 → R by f3(x, y, z) = 3x2y − yz2 − 4xz + 7

• f4 : R2 → R by f4(x, y) = x3 + y2 − 6xy

7 Implicit and Inverse function theorem
Before starting this section we will write two equations which can be seen as non-
rigorous, not well defined and nonsense to us. But it will seem so natural that it will be
a true statement for an intuitionist.

∂y

∂x

∂x

∂y
= 1 and

∂y

∂x
=

∂z
∂x
∂z
∂y

Now we will proceed to the theory to see how can we formalise this intuition.
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7.1 Implicit function theorem
We will always identify Rn × Rm with Rn+m for simplicity. i.e.
((a1, a2, · · · , an), (b1, b2, · · · , bm)) can be regarded as (a1, a2, · · · , an, b1, b2, · · · , bm).

Theorem 43 Let Ω be an open subset of Rn ×Rm. F : Ω→ Rm is of class C1. There exists
(x0, y0) ∈ Ω such that F (x0, y0) = 0.
If {e(n)

i }ni=1 and {e(m)
i }mi=1 forms a basis of Rn and Rm respectively, then {ẽ(n)

i }ni=1∪{ẽ
(m)
i }mi=1

forms a basis of Rn × Rm, where ẽ(n)
i is e(n)

i followed by m many zeroes and ẽ
(m)
i is e(m)

i

after n many zeroes. This is same as saying {e(n+m)
i }n+m

i=1 forms a basis of Rn+m.

Note that we denote D
ẽ
(n)
j
F (x0, y0) by

∂F

∂xj
(x0, y0) and D

ẽ
(m)
j
F (x0, y0) by

∂F

∂yj
(x0, y0). One

can informally think that we are naming the variables of Rn × Rm e.g. the variables of
Rn+m as x1, x2, · · · , xn, y1, y2, · · · , ym.

Let the m×m matrixM(x0, y0) is invertible where the ijth entry of this is
∂Fi
∂yj

(x0, y0).

A square matrix M is invertible if there exists another matrix N such that MN = NM = I
where I is the identity matrix of the same order.

Then there exists an open set U ∈ Rn containing x0 and an open set Ũ ∈ Rm containing
y0 such that

• For all x ∈ U there is unique yx = f(x) ∈ Ũ with F (x, f(x)) = 0.

• f(x0) = y0 i.e. y0 can be written explicitly as a functional value of x0.

• J f(x) = −[M(x, f(x))]−1
m×m[aij(x, f(x))]m×n where aij(x, f(x)) =

∂Fi
∂xj

(x, f(x)) for

all x ∈ U .

Proof(Hint)

The proof of the first part i.e. the existence of such f is highly non-trivial.
So the proof will be omitted. Those who are interested can try to think about it.
But assuming the existence of such f we prove the last part.
Define ψ : U → Rn × Rm by x 7→ (x, f(x)). Now g = F ◦ ψ. Use chain rule on g.
We have Dg(x) = DF (ψ(x))Dψ(x)(equation 1).

Observe that Jψ =

 In×n
−−−−−−−−

J fm×n


(n+m)×n

, JF =

∣∣∣∣(∂F∂xi )m×n (
∂F

∂yi
)m×m

∣∣∣∣
m×(n+m)

.

Also observe that J g =
[
0
]
m×n. Put these values in equation 1 and obtain the final

required equality.

7.2 Inverse function theorem

Theorem 44 Let Ω be an open subset of Rn

and F : Ω → Rn is of class C1. There exists
x0 ∈ Ω such that JF (x0) is invertible. Then

there exists

• An open set U ∈ Rn containing x0

• An open set V ∈ Rn containing F (x0)
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• A function G : V → U of class C1

such that the following are satisfied

• F (G(y)) = y for all y ∈ V

• G(F (x)) = x for all x ∈ U

• JG(y) = [JF (G(y))]−1 for all y ∈ V

Proof (Hint) : For existence of G use Implicit function theorem defining another
map Φ : U × Rn → Rn by Φ(x, y) = F (x) − y. Now use chain rule on the identity map
G ◦ F on U .

Definition 45 (Diffeomorphism) Let U and V be open subsets of Rn and Rm respectively.
A differentiable map f : U → V is called diffeomorphism if f is a bijection and f−1 : V → U
is also differentiable. Two sets are called diffeomorphic if there exists a diffeomorphism from
one of them to another.

Exercise 46 Prove or disprove : There is a diffeomorphism f from some open subset of Rn

to an open subset of Rn such that det[J f(x)] = 0 for some x in its domain. You can assume
det(AB) = det(A)det(B).

We won’t solve a lot of problems in this section. Rather we will see some applica-
tions of these two theorems to Physics. Note that, we are not going to take care of
any notation or terminology used in the next subsection (7.3). Our purpose is not to
rigorously focus on the topics described in next subsection. Rather our goal is to show
how these two theorems are used. Finding the meaning or definition of the things used
there is left as an exercise to the reader. Readers who are already aware of the problems
they will relate better to the use of these theorems.

7.3 Some applications to Physics
The Implicit Function Theorem is frequently used in mechanics. For example, in the
construction of canonical transformations in analytical mechanics.

For another example, take the motion of a point mass m, subject to a force law f
generated by an infinitely differentiable potential V satisfying the condition

DV (ξ) 6= 0 for each ξ 6= 0

The existence of an infinitely differentiable inverse function is guaranteed constructively
by our Inverse Function Theorem. This situation arises in the solution of certain Cauchy
problems, such as the damped pendulum

mẍ+ λẋ+ ksin(x) = γf(t) (t ∈ R+) · · · · · · (∗)

where λ ∈ R; λ,m, k are positive ; λ2 6= 4km and periodic and infinitely differentiable. If
the oscillations are small, then the damped linear oscillator admits isochronous periodic
motions with forcing term. More precisely, if f is infinitely differentiable with period
T > 0, then, provided γ is small enough, there exists a periodic motion, with period T ,
satisfying (∗). Together with (∗) let us consider the linearised equation

mẍ+ λẋ+ kx = γf · · · · · · (∗∗)
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which admits a periodic solution x̃ isochronous with f . We look for a periodic solution
of (∗) of the form

x(t) = γx̃(t) + y(t) (t ∈ R+)

with initial data
y(0) = ε ; ẏ(0) = η · · · · · · (∗ ∗ ∗)

We set
x(T ) = γx̃(T ) + a(ε, η, γ) and ẋ(T ) = γ ˙̃x(T ) + b(ε, η, γ)

Since x̃(0) = x̃(T ) and ˙̃x(0) = ˙̃x(T ) by the periodicity of x̃ the condition that (∗) admits
a periodic solution with period T can be restated as a(ε, η, γ) = ε and b(ε, η, γ) = η. But
the solvability of the equations {

a(ε, η, γ) = ε

b(ε, η, γ) = η

is equivalent to the existence of a periodic solution of (∗) with period T . We now have
the problem of expressing ε and η as functions of a sufficiently small γ.
This is possible if the Jacobian determinant of partial derivatives with respect to ε and
η is non zero. The computation of these partial derivatives is based on the equations{

a(ε, η, γ) = y(T )

b(ε, η, γ) = ẏ(T )

where y(t) is a solution of the Cauchy problem

mÿ(t) + λẏ(t) + ky(t) = k(γx̃(t) + y(t)− sin(γx̃(t) + y(t)))

with initial conditions (∗ ∗ ∗). Finally, it is easy to see that the corresponding Jacobian
determinant equals

(ea+T − 1)(ea−T − 1) 6= 0

where a+ and a− are respectively, the positive and negative parts of a. So the Cauchy
problem has a constructive solution given by our Implicit Function Theorem.

8 Lagrange Multiplier
This is a fairly small section, may be the smallest. We state one simple result and see
applications. In maxima-minima section we learnt to find local maxima and minima of a
C1 function. But now we will find maxima-minima of a function given some constraints.
For example, in R2 let we have to find the minimum value of x+ 2y given the constraint
xy = 3. So we need to find the minima of f(x, y) = x+ 2y restricted to the set {(x, y) ∈
R2 | xy − 3 = 0}. Now we state the theorem, then methods, then we apply this to
various interesting problems.

Theorem 47 f : Rn → R is of class C1. m ≤ n. g : Rn → Rm is also of class C1.
M = {x ∈ Rn | g(x) = 0}. (Note that M is a subset of Rn). Let a be a critical point of
f |M. i.e. a ∈M such that Df(a) = 0. Then

∇f(a) = Σm
i=1λi∇gi(a) for some λi ∈ R
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The proof of this theorem requires a lot of new concepts from differential geometry and
linear algebra. We don’t focus on that but interested readers may try to think about it
after figuring out details or just the definition of some concepts like level set, n-Surface,
Vector field, tangent field, parametrized curve, orthogonal complement of a subspace of
a vector space etc. We don’t discuss those here. We try to find out the proper method to
apply it.

The set up of our problem will be the following. Or given any problem we need to
create the following set up first.
We are given a f : Rn → R and we have to find maximum or minimum value of f when
the domain is restricted to {x ∈ Rn | g(x) = 0}.So we also have a g : Rn → Rm and
m ≤ n.
The method/algorithm we follow to solve the problem is the following. We find the
1× n row vector ∇f . Similarly find the 1× n row vectors ∇gi for all 1 ≤ i ≤ m. We put
these in the equation ∇f = Σm

i=1λi∇gi. Now from n many components we find n many
equations. We solve them by eliminating λi s. And find the point a such that Df(a) = 0.
We have a critical point. Now we use our usual methods from section 6 to find whether
it’s a maxima, minima or saddle point.

Problems
Problem 48 Prove AM - GM inequality. Let x1, x2, · · · , xn be positive real numbers. Then

Σn
i=1xi
n

≥ (Πn
i=1xi)

1
n

Hint : As xi s are positive real numbers, we have xi = y2
i for some yi ∈ R+. Define

f : Rn → R by (y1, y2, · · · , yn) 7→ y2
1y

2
2 · · · y2

n and g : Rn → R by (y1, y2, · · · , yn) 7→ Σn
i=1y

2
i .

Problem 49 Find the shortest distance from the ellipse x2 + 2y2 = 2 to the line x+ y = 2.
Hint : Define f : R4 → R by (x, y, u, v) 7→ (u − x)2 + (v − y)2 and g : R2 → R by
(x, y) 7→ (x2 + 2y2 − 2, x+ y − 2).

Problem 50 The temperature at the point (x, y, z) in the 3 − dimentional space is given
by f(x, y, z) = xy + z2. Find the hottest and coolest point on the sphere x2 + y2 + z2 = 2z.

Problem 51 Find the norm of the matrix A =

[
1 2
0 1

]
Hint : Find the maxima of

‖ Av ‖
‖ v ‖

given ‖ v ‖= 1 where v ∈ R2.

Problem 52 For a given cylindrical can of unit volume, what should be its radius and
length for it to have the least surface area ?
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Part II

Integration
9 Integration on Rn

9.1 Integration on R
First we look at the analytical meaning of integration (namely Riemann Integration) on
R.

Definition 53 (Partition) Let [a, b] ⊂ R. A partition P [a, b] is a finite collections of points
of [a, b] in increasing order with the endpoints a and b i.e. P [a, b] : a = t0 < t1 < · · · <
tn−1 < tn = b for some n ∈ N and ti ∈ [a, b].

Figure 1: Partition of [a,b]

Let f : [a, b] → R be a bounded function. P is a partition of the interval [a, b] and
P : a = t0 < t1 < · · · < tn−1 < tn = b. For all 1 ≤ i ≤ n define

mi(f) = inf
x∈[ti−1,ti]

f(x) and Mi(f) = sup
x∈[ti−1,ti]

f(x)

So we can think of rectangular strips of length ti − ti−1 for all i. Now if we take the
height of this strip as mi(f) it gives us a lower value of the area than the actual area
under the curve y = f(x) in the region [ti−1, ti]. Similarly, if we take the height of this
strip as Mi(f) it gives us a higher value of the area than the actual area under the curve
y = f(x) in the region [ti−1, ti]. Now we analytically try to minimise these errors in the
value of area, take sum over all the areas in a partition, find the area under the curve
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y = f(x) in [a, b]. And we denote that by
∫ b
a
f(x)dx.

For the partition P of [a, b] we now define two more things.

• Lower sum of f determined by P = L(f, P ) = Σn
i=1mi(f)(ti − ti−1)

• Upper sum of f determined by P = U(f, P ) = Σn
i=1Mi(f)(ti − ti−1)

Till now we defined things for a fixed partition P of [a, b]. But there can be a lot of
different partitions of [a, b] as well. Let P[a, b] denote the set of all partitions of the
interval [a, b]. Then we define two new things.

• Lower integral of f over [a, b] =
∫ b
_a

f = supP∈P[a,b] L(f, P )

• Upper integral of f over [a, b] =
∫^b

a
f = infP∈P[a,b] U(f, P )

Definition 54 f : [a, b] → R is a bounded function. We say f is integrable over [a, b] if∫ b
_a

f =
∫^b

a
f . In that case we also say∫ b

a

f(x)dx =

∫ b

_a

f =

∫ ^b

a

f

For example we can take zero function, constant function and identity function. In
all of these cases calculating L(f, P ) and U(f, P ) is pretty easy for a particular partition
P of [a, b]. One can try to find lower and upper integrals from them and show that
they are equal. But this definition is not always helpful in terms of proving a function
is integrable. So we look at some other equivalent criterion which can be proved from
this basic definition (definition 54). But we will consider them too as definitions and
use if necessary. Interested readers may try to prove the equivalences of the definitions.

Definition of integrability

Definition 55 (Mesh of a partition) Let P be a partition of the interval [a, b] and P :
a = t0 < t1 < · · · < tn−1 < tn = b. Mesh of this partition =‖ P ‖= supni=1(ti − ti−1).

Note that all the criterion we are going to discuss here are theorems itself and all of
them are equivalent. But for our convenience we will consider them as definition. We
follow all the notations already described in this section. Let f : [a, b]→ R be a bounded
function. f is integrable over [a, b] if

• ε− δ Criterion : There exists I ∈ R such that for all ε > 0 there exists δε > 0 such
that

∀ P ∈ P[a, b] , ‖ P ‖< δε =⇒ | L(f, P )− I |< ε

and
∫ b
a
f(x)dx = I.

• Darboux Criterion : Already mentioned in Definition 54.

• Cauchy Criterion : For all ε > 0 there exists Pε ∈ P[a, b] such that

U(f, Pε)− L(f, Pε) < ε
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Riemann sum Criterion :

First we define Riemann Sum of f determined by a partition P : a = t0 < t1 < · · · <
tn−1 < tn = b. For any choice of t∗i ∈ [ti−1, ti] we defineR(f, P ) = Σn

i=1f(t∗i )(ti−ti−1). Till
now this Riemann sum is not well defined. There can be many values of it depending
on the choice of t∗i s. Now f is integrable over [a, b] if there exists I ∈ R such that for all
ε > 0 there exists δε > 0 such that

∀ P ∈ P[a, b] , ‖ P ‖< δε =⇒ | R(f, P )− I |< ε

for any choice of R(f, P ) s. and
∫ b
a
f(x)dx = I. So now one can show that if f is

integrable over [a, b] and ‖ P ‖→ 0 i.e. if n → ∞ the quantity R(f, P ) is a unique
number irrespective of the choice of t∗i s and

∫ b
a
f(x)dx = limn→∞R(f, P ).

Exercise 56 f : [a, b] → R is continuous. Prove that f is integrable over [a, b]. Also
prove if g : [a, b] → R is differentiable everywhere then g is integrable over [a, b]. (Hint :
For first part use epsilon-delta definition of continuity and any of your favourite definition
of integrability which uses epsilon-delta. For second part use the fact that differentiable
functions are continuous)

9.2 Integration on Rn

In the previous subsection we talked about integrations on R over intervals. Similarly
we will define rectangles/boxes in Rn analogous to intervals in R. A rectangle/box
Θ ∈ Rn is a set [a1, b1] × [a2, b2] × · · · × [an, bn] where [ai, bi] is an interval in R for all
1 ≤ i ≤ n. In this section we will discuss integrations on Rn over boxes/rectangles.
Note that in R2 boxes are actual rectangles. In R3 they are cuboids. In general we will
always call them rectangles in Rn.

Figure 2: Sub-rectangles in R2

As we had partition in R, we should be able to find something analogous here.
Before that we look at the partition in R once again. Let P ∈ P[a, b] and P : a = t0 <
t1 < · · · < tn−1 < tn = b. We call each small intervals [ti−1, ti] as a subinterval Ti of
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P . So another way to define partition P is collection of subintervals {Ti}ni=1 where end
point of Ti−1 is the initial point of Ti and initial point of T1 is a, endpoint of Tn is b.

Let Θ = [a1, b1]× [a2, b2]× · · · × [an, bn] be a rectangle in Rn. Now a partition P of Θ
is of the form P1 × P2 × · · · × Pn where Pi ∈ P[ai, bi] is a partition of [ai, bi] in R for all
1 ≤ i ≤ n. So a sub-box/ sub-rectangle R of P is of the form R1 × R2 × · · · × Rn where
Ri is a subinterval of Pi for all 1 ≤ i ≤ n.

In figure-2 the shaded portion is a sub-rectangle of P of R2. Note that R = Ti+1× Sj
where Tj+1 is a subinterval of R and Sj is also a subinterval of R.

If a subinterval Ri is of the form [c, d] in R we say it’s length is d − c. Similarly if a
sub-rectangle R in Rn is of the form [c1, d1] × [c2, d2] × · · · × [cn, dn] then it’s volume is
defined as V(R) = (d1 − c1)(d2 − c2) · · · (dn − cn).

Now we are ready to define integration on higher dimension. Let Θ be a rectangle in
Rn and f : Θ → R be a bounded function. Now P = {Ri}ki=1 be a partition of Θ where
Ri s are sub-rectangles of the partition P . Then for all 1 ≤ i ≤ k define

mi(f) = inf
x∈Ri

f(x) and Mi(f) = sup
x∈Ri

f(x)

Similarly the way we defined on R here also we define

• Lower sum of f determined by P = L(f, P ) = Σk
i=1mi(f)V(Ri)

• Upper sum of f determined by P = U(f, P ) = Σk
i=1Mi(f)V(Ri)

And also we have the concepts of lower and upper integrals in the same way. Let P(Θ)
denote the set of al partitions of Θ. Then

• Lower integral of f over Θ =
∫

Θ_
f = supP∈P(Θ) L(f, P )

• Upper integral of f over Θ =
∫^

Θ
f = infP∈P(Θ) U(f, P )

Here we define the mesh of a partition P (where P = {Ri}ki=1) as

‖ P ‖= k
sup
i=1
V(Ri)

. Now with this set up we are ready to define the definitions and equivalent theorems of
integrability on Rn. We finish the whole theory of integration on Rn by stating the fact
that all the theorems and definitions of the previous section holds with a small change
i.e. this new meaning of lower and upper sum, lower and upper integrals and mesh of
a partition. Our goal is now to go back and see Definition 54 once again followed by
epsilon− delta, Cauchy, Darboux and Riemann sum criterion. Interested readers may
write the same thing again on Rn. We avoid the copy-paste job. Note that we denote
the integration of f over Θ by

∫
Θ
f .

Exercise 57 Θ = [0, 1] × [0, 1] ⊂ R2 and following functions are defined from Θ to R.
Check whether they are integrable over Θ and if so calculate

∫
Θ
fi for all of the following

problems.
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•

f1(x, y) =

{
1 if (x, y) = (0, 0)

0 otherwise

•

f2(x, y) =

{
1 if x ∈ Q, y ∈ Q
0 otherwise

•

f3(x, y) =

{
1 if x = 0, y ∈ Q
0 otherwise

•

f4(x, y) =

{
1 if x = y

0 if x 6= y

Continuity implies Integrability

Statement : f : Θ → R is a continuous function where Θ is a rectangle in Rn. Then f
is integrable over Θ.
In exercise 56 it was proved for n = 1. Now we are in a more general set up. This can
be proved using the hints of the exercise 56 and the following fact.
We define a stronger version of continuity namely uniform continuity. Let f : A → R
where A ⊆ Rn. We say f is uniformly continuous on A if for all ε > 0 there exists δ such
that ∀ x, y ∈ A, ‖ x− y ‖< δ =⇒ | f(x)− f(y) |< ε. So the difference of this definition
from the usual definition of continuity is that the value of δ here is independent of the
point where we are considering the continuity of the function.
Now we state another important result. Let A be a compact subset of Rn. If f : A → R
is continuous on A, then f is uniformly continuous on A.
Now our closed rectangle Θ is compact in Rn. So use the fact f is uniformly continuous
and use the hints given.

More on partitions

We didn’t study some properties of partitions in R so that we can do them now in a
more general set up. We first define Refinement of a Partition.
First we define our partition of a rectangle Θ as a collection of elements of Θ in a
particular order. For example, in R, partition of [a, b] is P and P : a = t0 < t1 < · · · <
tn−1 < tn = b. i.e. P is collection of ti s. In this set up we define refinement as following.
Let P and Q be two different partitions of Θ. We say Q is a refinement of P if P ⊆ Q.
It’s just that we obtain Q by some more fine partitions of [a, b] than what we already
had in P . Sometimes we also use the phrase that Q is finer than P .
Now we define our partition of a rectangle Θ as a collection of sub-rectangles in Θ. So
in this set up Q is finer than P if and only if all the sub-rectangles of Q are sub-rectangle
of some sub-rectangles of P . Now we see some lemmas/propositions in the form of
exercises.

Exercise 58 Θ is a rectangle in Rn and f : Θ→ R be a bounded function. Let P,Q ∈ P(Θ)
be two arbitrary partitions. Then

• Prove that L(f, P ) ≤ U(f,Q)

• If Q is a refinement of P show that L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q)
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Hint : Follows from definition

This exercise gives an intuition that if we keep making the partition finer and finer
the value of L(f, P ) s increase and approach towards it’s supremum i.e.

∫
f . Similarly,

making the partition finer decreases the value of U(f, P ) s and reach
∫
f slowly. Now

making a partition is finer and finer means making the mesh of the partition smaller and
smaller. Recall the Riemann sum criterion. We do exactly the same thing i.e. n → ∞
(making the partition finer in limiting sense) or ‖ P ‖→ 0 (making the mesh smaller in
limiting sense).

Special case of Riemann sum

Our next and final goal of this section is to review a special case of Riemann sum
criterion which will be useful later. We will restrict our discussion upto three variables.
The concept is same for n variables.

Let f : [a, b] → R be bounded. Let n ∈ N. Define ∆x =
b− a
n

. Our partition is

a, a + ∆x, a + 2∆x, · · · , a + n∆x = b. Hence the mesh of the partition is ∆x. And
now we choose a representative from each of these n many intervals. For simplicity
let’s choose the midpoint of the interval. Let xi denote the representative from the ith

interval. So, for all 1 ≤ i ≤ n we have xi = a+ (i− 1
2
)∆x. Now we define our Riemann

sum explicitly by R(f) = Σn
i=1f(xi)∆x. If f is integrable over [a, b], from Riemann sum

criterion we have ∫ b

a

f(x)dx = lim
n→∞

Σn
i=1f(xi)∆x

.
Now in R2 let A = [a, b] × [c, d] be a rectangle. f : A → R is integrable over

A. Let m,n ∈ N. Define ∆A = (
b− a
m

)(
d− c
n

). So we have partition P of [a, b] as

a, a + ∆x, a + 2∆x, · · · , a + m∆x = b where ∆x =
b− a
m

. We also have partition Q of

[c, d] as c, c+ ∆y, c+ 2∆y, · · · , c+ n∆y = d where ∆y =
d− c
n

. So, ∆A = ∆x∆y. In the

same manner we take midpoints xi of intervals of P and midpoints yi of intervals of Q.
Now from our Riemann Sum criterion we have (follow some new notations)∫

A

fdA =

∫ d

c

∫ b

a

f(x, y)dxdy = lim
m,n→∞

Σn
j=1Σm

i=1f(xi, yj)∆x∆y

Now in R3 with a new variable z, let V = [a, b] × [c, d] × [e, f ] be a cuboid and
g : V → R be integrable over V . So ∆V = ∆x∆y∆z. And we have∫

V

gdV =

∫ f

e

∫ d

c

∫ b

a

g(x, y, z)dxdydz = lim
m,n,p→∞

Σp
k=1Σn

j=1Σm
i=1g(xi, yj, zk)∆x∆y∆z

10 Measure on Rn

Measure theory is an important tool of analysis. It gives rise to a complete new concept.
We can define integrations in a more general set-up after knowing something called
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Lebesgue measure. But here our goal is not to develop the theories of Lebesgue integra-
tion. We just learn something about Lebesgue measure and see the Lebesgue criterion
of Riemann integrability. From the last section we know that continuous functions are
integrable. But after knowing Lebesgue criterion we will find a larger class of integrable
functions. Before that we define some basic concepts of sets.

• A set A is finite if there exists a bijection f : A→ {1, 2, 3, · · · , n} for some n ∈ N.

• A set is infinite if it is not finite.

• A set A is countably infinite if there exists a bijection g : A→ N.

• A set is countable if it is finite or countably infinite.

• A set is uncountable if it is not countable.

10.1 Measure on R
Let’s think about intervals in R. If we have (a, b) or [a, b] or (a, b], we can think of
a small line segment joining points a and b on real axis. And the length of this line
segment is nothing but b − a. So there are some subsets of R whose lengths can be
defined. Till now we have seen a very small class of sets namely intervals whose length
can be defined. But the next question naturally comes to our mind is whether we can
define length of any arbitrary subset of R. And this encourages us to define a concept of
measure/length/Lebesgue measure. To define measure of any subset we use what we
already know i.e. length of intervals.

First we define an open cover of a subset A of R. Let {Ui}i∈I be collections of open
subsets of R where I is an arbitrary index set. It can be finite or infinite, countable or
uncountable. We say U = ∪i∈IUi an open cover of A if A ⊆ U . For example ∪n∈N(n −
1
3
, n+ 1

3
) is an open cover of N.

For simplicity now we will take our Ui as open intervals which are just special open
sets and we will denote them by Ii s. So if our open set is Ii = (a, b), we define length of
it l(Ii) = b − a. Now let A ⊆ R and we denote the set of all open covers of A by O(A).
So if T ∈ O(A) we have T = ∪i∈IIi where Ii s are open intervals of R and A ⊆ T .

Now for open cover T = ∪i∈IIi we think of an sum (this can be finite sum or infi-
nite series) Σi∈I l(Ii). Note that this sum may exist or may not. We now define (with
an informal notation) m(T ) = Σi∈I l(Ii). Either m(T ) doesn’t exist or m(T ) ∈ R if it
exists. Our final goal is to find a suitable cover T of A such that this quantity m(T ) can
analytically measure the length of the set A.

We are now ready to define a new concept. Let A ⊆ R. The Lebesgue measure of A
is defined as

m∗(A) = inf
T∈O(A)

m(T )

Now we don’t solve any problems or don’t see any example, rather we directly jump
to define it on Rn. After that we will solve problems and see examples.
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10.2 Measure on Rn

Let A ⊆ Rn. The definition of open cover is same as R. But we don’t have intervals any
more. So in place of Ii s on R we now take Ri s on Rn where Ri s are open rectangles in
Rn. We say R is an open rectangle of Rn if R = (a1, b1) × (a2, b2) × · · · × (an, bn) where
(ai, bi) is an open interval of R for all 1 ≤ i ≤ n.

Now as we have a concept of length l(I) for an interval I, here we have a concept
of generalised volume V (R) of an rectangle R which is defined as following. If R =
(a1, b1) × (a2, b2) × · · · × (an, bn) we define V (R) = (b1 − a1)(b2 − a2) · · · (bn − an). Note
that this quantity represents the area in R2 and volume in R3. In general we will call
them volume.

Also our definition of m(T ) is also slightly different but the concept is similar. Let
T = ∪i∈IRi. We now define (with an informal notation) m(T ) = Σi∈IV (Ri). Either
m(T ) doesn’t exist or m(T ) ∈ R if it exists. So now we are all set to define Lebesgue
measure in higher dimension.

Let A ⊆ Rn. The Lebesgue measure of A is defined as

m∗(A) = inf
T∈O(A)

m(T )

10.3 Basic properties of Lebesgue measure
0. Any open set has non-zero Lebesgue measure.
⇒Open sets contain open intervals or open rectangles which has positive length/volume.

1. Let A ⊆ Rn. We say A has measure 0 in Rn if for all ε > 0 there exists an open cover
Θ ∈ O(A) such that m(Θ) < ε. In general A has measure α in Rn i.e. m∗(A) = α if for
all ε > 0 there exists an open cover Θ ∈ O(A) such that α ≤ m(Θ) < α + ε.
⇒ This directly follows from the definition of infimum.

2. B ⊆ A ⊆ Rn. Then m∗(B) ≤ m∗(A).
⇒ Note that if Θ is an open cover of A it is also an open cover of B. So O(A) ⊆ O(B).
Which implies infT∈O(B) m(T ) ≤ infT∈O(A) m(T ).

3. Let A ⊆ Rn and A = ∪i∈IAi for some countable index I. m∗(Ai) = 0 for all i ∈ I.
Then m∗(A) = 0.
⇒We can index the elements of I as 1, 2, 3, · · · because set of natural numbers is count-
able and has a bijection with I. Start with an arbitrary ε. Now use property 1 for A1

with ε
2
. Again use property 1 for A2 with ε

4
. In a word, use property 1 for Ai with ε

2i
.

Now the union of corresponding covers of Ai s will be a cover of A. Finally use the fact
that Σi∈N

ε
2i

= ε to show m∗(A) = 0.

4. For a subset A of Rn we define Boundary Bdy(A) = A\ int(A) where A is the closure
of A and int(A) is the interior of A.
Let Θ be an open rectangle in Rn. Then m∗(Bdy(Θ)) = 0 but m∗(Θ) 6= 0.
⇒ Exercise.

5. A is a finite subset of Rn. Then m∗(A) = 0
⇒ Let A = {a1, a2, · · · , ak}. So any ai is of the form (ai1, ai2, · · · , ain) because ai ∈ Rn

for all 1 ≤ i ≤ k. Start with an arbitrary ε. Consider an open rectangle Ri =

38



(ai1− 1
4
( ε
k
)1/n, ai1+ 1

4
( ε
k
)1/n)×(ai2− 1

4
( ε
k
)1/n, ai2+ 1

4
( ε
k
)1/n)×· · ·×(ain− 1

4
( ε
k
)1/n, ain+ 1

4
( ε
k
)1/n).

So V (Ri) = ε
2nk

. Now take an open cover of A by Θ = ∪ki=1Ri. We have m(Θ) = ε
2n
< ε.

Now use property 1.

6. A is a countable subset of Rn. Then m∗(A) = 0
⇒ Let A = {a1, a2, · · · }. So any ai is of the form (ai1, ai2, · · · , ain) because ai ∈ Rn

for all 1 ≤ i ≤ k. Start with an arbitrary ε. Consider an open rectangle Ri = (ai1 −
1
4
( ε

2i
)1/n, ai1 + 1

4
( ε

2i
)1/n)×(ai2− 1

4
( ε

2i
)1/n, ai2 + 1

4
( ε

2i
)1/n)×· · ·×(ain− 1

4
( ε

2i
)1/n, ain+ 1

4
( ε

2i
)1/n).

So V (Ri) = ε
2n2i

. Now take an open cover of A by Θ = ∪i∈NRi. We have m(Θ) =
ε

2n
(Σi∈N

1
2i

) = ε
2n
< ε. Now use property 1.

7. Prove or disprove. A is an uncountable subset of Rn. Then m∗(A) 6= 0
⇒ Cantor set is the counter-example.

Cantor Set

Figure 3: Construction of cantor Set

We start with [0, 1] in R. we divide this segment in three equal parts and in the first
step we remove the middle one third of it. So now we are left with two line segments.
In the next step we remove the middle one third of both of them. So in nth step we
remove the middle one third of each of the line segment left in (n − 1)th step. Let the
thing left after first step is C1 = [0, 1

3
] ∪ [2

3
, 1]. Then C2 = [0, 1

9
] ∪ [2

9
, 1

3
] ∪ [2

3
, 7

9
] ∪ [8

9
, 1].

In this way after n steps we are left with Cn which is a subset of [0, 1]. We define our
cantor set to be C = ∩n∈NCn. So it is just the left part after deleting every middle parts.
This is called Cantor’s Dust as well. Because the left part is just like dust particles lies in
the interval [0, 1].

First we need to show that C is uncountable. We leave this as an exercise to the
reader with a small hint. Use the fact that [0, 1] is uncountable and show that there
exists a bijection between [0, 1] and C. You can use the binary expansions of the numbers
between 0 and 1 and ternary expansions of the numbers in C once you know what they
mean. Then try to observe that the ternary expansions of the numbers in C doesn’t
contain the digit 1, they are just formed by 0 and 2 s. And the binary expansion of a
number contains only 0 and 1. So now you can define an obvious bijection between
them.

Now we show that m∗(C) = 0. Let’s calculate first the length of the interval we
remove in each step. For step 1 it is 1

3
. Then for step 2 it becomes 1

3
× 2

3
. In this way for
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step n it is 1
3
× (2

3
)n−1. So the total length we remove is

Σ∞n=0

1

3
× (

2

3
)n =

1
3

1− 2
3

= 1

. As the total length of [0, 1] is 1. So the length remains after removing these is 0. So
m∗(C) = 0.
One can assume or try to prove from the definition of series that for a, r ∈ R and
0 < r < 1, we have a+ ar + ar2 + · · · = a

1− r
.

Now we are going to state the theorem which was the main goal of this section. We
find the Lebesgue criterion of integrability.

Theorem 59 Lebesgue criterion of Integrability : LetQ be a rectangle in Rn. f : Q→ R
be a bounded function. Let D be the set of points of Q where f is not continuous. i.e.

D = {x ∈ Q | f is not continuous at x}

Then
∫
Q

exists if and only if m∗(D) = 0.

As we have seen an important result that set of points of discontinuity of an inte-
grable function has measure zero, let’s solve some problems using this criterion.

Exercise 60 Define the greatest integer function b.c : R→ Z by bxc = the greatest integer
less than or equal to x. For example, b3.42c = 3, b−5.19c = −6 and b1c = 1. Prove that
b.c is integrable over [−π, 7.31].

Exercise 61 Let Q be a rectangle in Rn. f : Q → R is integrable over Q. Prove the
following

1. If f vanishes except on a set of measure 0, then
∫
Q
f = 0. i.e. Let the set V = {x ∈

Q | f(x) 6= 0} and m∗(V ) = 0 then
∫
Q
f = 0.

2. If f(x) ≥ 0 for all x ∈ Q and
∫
Q
f = 0 then the set V = {x ∈ Q | f(x) 6= 0} has

measure 0 i.e. f vanishes except on a set of measure 0.

11 Extended Integrals

11.1 Integration over bounded sets
Till now we have done integrations only over closed and bounded rectangles in Rn.
Throughout this section we will figure out how else we can define integrations, specif-
ically over what other sets. Our first goal is to do integrations over any bounded set,
which is not necessary closed rectangle.

Let A be a bounded set in R. So A ⊆ [a, b] for some a, b ∈ R. Similarly let S be a
bounded set in Rn. Now S ⊆ Q for some closed rectangle Q ∈ Rn. Let f : S → R be
a bounded function. Till now we don’t know the meaning of integration of f over S.
Here we are going to develop that idea.
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Choose a closed rectangle Θ ∈ Rn such that S ⊆ Θ. Define a function fS : Θ→ R by

fS(x) =

{
f(x) if x ∈ S
0 if x ∈ Θ \ S

Note that fS is a bounded function. Now we can talk about integrability of the function
fS over Θ. Now we are ready to define integration of f over S.

Definition 62 With the afore mentioned set up f is integrable over S if fS is integrable
over Θ for any choice of Θ. And the value of the integration of f over S is∫

S

f =

∫
Θ

fS

Now we see a theorem which is an initiative to define integration over open sets.

Theorem 63 Let S be a bounded set in Rn. f : S → R is a bounded continuous function.
Let A = int(S). If f is integrable over S, f is also integrable over A, and

∫
A
f =

∫
S
f .

Our next goal is to define a new concept namely rectifiability of a bounded set.
Later we will see that some special kind of sets (called compact rectifiable sets) take an
important role in the theory of integration.

11.2 Rectifiability
Definition 64 (Rectifiable set) Let S be a bounded set in Rn. If the constant function
f : S → R by f(x) = 1 ∀ x ∈ S is integrable over S, we say that S is rectifiable.

Interestingly, for a rectifiable set S, the measure/volume of S or value of S is defined
by,

V(S) =

∫
S

1

Similarly we can define volume of any bounded set A in Rn by the same formula V(A) =∫
A

1 if it exists.
Recall that for a subset A of Rn we define Boundary Bdy(A) = A\ int(A) where A is

the closure of A and int(A) is the interior of A. The next theorem establishes a relation
between measure and rectifiability.

Theorem 65 A bounded set S of Rn is rectifiable⇔ Bdy(S) has measure 0.

It is a highly non-trivial fact that there exists bounded non-rectifiable set i.e. there
exists bounded set such that the constant function 1 is not integrable over that. We give
a counter example by producing a bounded set whose boundary has measure greater
than 0. Set of rational numbers Q is countable. So denote the set of all rational numbers
in (0, 1) by a sequence q1, q2, · · · . Fix a real number a such that 0 < a < 1. Now for each
i ∈ N we can choose an interval (ai, bi) ⊂ (0, 1) such that bi − ai < a

2i
and qi ∈ (ai, bi).

Define S = ∪i∈N(ai, bi). Note that S = [0, 1]. So m∗(S) = 1. Now int(S) is an open set.
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So 0 < m∗(int(S)) < Σi∈N
a
2i

= a. Hence, m∗(Bdy(S)) > 1 − a > 0. So S is a bounded
set which is not rectifiable.

Now we will see some properties of rectifiability. Note that all the sets we will talk
about in the following properties are bounded subsets of Rn.
1. If S is rectifiable, V(S) ≥ 0.

2. If S1, S2 are rectifiable and S1 ⊆ S2, then V(S1) ≤ V(S2).

3. If S1 and S2 are rectifiable, so are S1 ∪ S2 and S1 ∩ S2. And

V(S1 ∪ S2) = V(S1) + V(S2)− V(S1 ∩ S2)

4. Suppose S is rectifiable then V(S) = 0 if and only if S has Lebesgue measure 0 i.e.
m∗(S) = 0.

5. If S is rectifiable so is A = int(S) and V(A) = V(S).

6. If S is rectifiable and f : S → R is bounded continuous function, then f is integrable
over S.

11.3 Integration over simple regions
Now we proceed one step further and define integrations on a special kind of sets called
simple regions.

Definition 66 (Simple region) Let C be a compact rectifiable set in Rn−1. Let φ, ψ be
continuous functions from C to R such that φ(x) ≤ ψ(x) for all x ∈ C. The subset S of Rn

defined by
S = {(x, t) ∈ Rn | x ∈ C ∧ φ(x) ≤ t ≤ ψ(x)}

is called a simple region in Rn.

Lemma 67 If S is a simple region in Rn, then S is compact and rectifiable.

Lemma 67 ensures us that we can define integrations over simple regions because
they are bounded being a compact set. Also any bounded continuous function is inte-
grable over them (property 6) because they are rectifiable. Next theorem shows how to
calculate integrations over simple regions. We state the theorems and see some appli-
cations of it.

Theorem 68 (Fubini’s theorem for simple regions) Let C be a compact rectifiable set
in Rn−1. Let φ, ψ be continuous functions from C to R such that φ(x) ≤ ψ(x) for all x ∈ C.
S = {(x, t) ∈ Rn | x ∈ C ∧ φ(x) ≤ t ≤ ψ(x)} is simple region in Rn. Let f : S → R be a
bounded continuous function. Then∫

S

f =

∫
C

∫ t=ψ(x)

t=φ(x)

f(x, t)dtdx

Exercise 69 Find the area enclosed between the parabola y = x2 and the straight line
x+ y = 2 in Cartesian plane.
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Figure 4: Exercise-69

Hint : Calculate
∫ x=1

x=−2

∫ y=2−x
y=x2

1dydx and before that try to see how to get this using
Fubini’s theorem. (See Figure 4)

Till now we have seen integrations on closed and bounded rectangles, bounded sets,
compact and rectifiable sets, simple regions. Our current goal is to define integrations
on open sets.

11.4 Integration over open sets
Let A be an open set in Rn. Let f : A → R be a continuous function. If f(x) ≥ 0 for all
x ∈ A, we can define Extended integral of f over A, denoted by

∫
A
f .

Definition 70 (Extended integrals) With the afore mentioned set up
∫
A
f is the

supremum of the set S = {
∫
D
f | D is a compact rectifiable subset of A} if it exists. If

supS doesn’t exist extended integral of f over A doesn’t exist.

We were working with non-negative function f here. Now we will do it more generally.
Let f is a continuous function from A to R. Define f+(x) = max{f(x), 0} and f−(x) =
max{−f(x), 0}. Note that both f+ and f− are non negative functions from A to R. We
have f = f+ − f− and |f | = f+ + f−. If both

∫
A
f+ and

∫
A
f− exists, we say extended

integrals
∫
A
f and

∫
A
|f | exist where∫

A

f =

∫
A

f+ −
∫
A

f− and

∫
A

| f |=
∫
A

f+ +

∫
A

f−

Before definition 70 we were always working with bounded functions. Here we
dropped that condition. But then for the well-defineness, we need to show

∫
D
f exists

for any compact rectifiable set D and continuous function f from D to R. That will be
ensured by the following theorem. Also note that D is bounded because it is compact.
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Theorem 71 Let A be a bounded subset of a metric space X. f : X → R is a continuous
function. Then f(A) is bounded in R.

So wherever, we have defined bounded and continuous real valued function on a bounded
set it is unnecessary because only the continuity on a bounded set implies the bounded-
ness of the function.

In the above definition, we took the supremum over all the compact rectifiable sub-
sets of an open set. The next Lemma shows that in an open set there exits a compact
rectifiable subset. In fact, there are plenty of them.

Lemma 72 Let A be an open set in Rn. Then there exists sequence of compact rectifiable
subsets C1, C2, · · · of A such that ∪i∈NCi = A and Cn ⊆ int(Cn+1) for all n ∈ N.

Theorem 73 Let A be an open set in Rn. Let C1, C2, · · · be a sequence of compact recti-
fiable subsets of A such that ∪i∈NCi = A and Cn ⊆ int(Cn+1) for all n ∈ N. Then the
extended integral of f over A exists if and only if the sequence

∫
Cn
|f | is bounded. In this

case the value of the extended integral is∫
A

f = lim
n→∞

∫
Cn

f

As of now, we have a notion of ordinary integrals over bounded sets and extended
integrals over any open set. The next theorem shows the relation between them in a
bounded open set.

Theorem 74 Let A be a bounded open subset of Rn. Let f : A → R be a bounded
continuous function. Then the extended integral

∫
A
f exists.

If the ordinary integral also exists then they are equal.

Now we are ready to state the final theorem of this section. This helps us to define
integrations over a larger class of sets in a handy way.

Theorem 75 Let A be open in Rn. f : A → R is continuous. Let U1 ⊆ U2 ⊆ U3 ⊆ · · · be
a sequence of open sets such that ∪i∈NUi = A (This sequence always exists because A itself
is an open set). Then the extended integral

∫
A
f exists if and only if the sequence

∫
Un
| f |

exists and it is bounded. In that case the value of the extended integral is∫
A

f = lim
n→∞

∫
Un

f

Now we see very important applications of these techniques of doing integration
over open sets.

Exercise 76 Calculate
∫∞

1
1
x
dx.

Hint : We are asked to calculate the extended integral of the function f(x) = 1
x

in the
open set (1,∞). For all n ∈ N define open sets Un = (1, n). Now (1,∞) = ∪n∈N(1, n).
Also observe that

∫
Un

1
x
dx =

∫ n
1

1
x
dx = 1− 1

n2 . Now limn→∞
∫
Un

1
x
dx = limn→∞(1− 1

n2 ) = 1.
So
∫∞

1
1
x
dx = 1.
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Exercise 77 Calculate
∫∞

1

∫∞
1

1

x2y2
dxdy

Hint : Open set is (1,∞) × (1,∞) ⊆ R2. Define Un = (1, n) × (1, n). Observe that∫
Un

1

x2y2
= 1− 2

n
+

1

n2
. Find the limit as n approaches to infinity.

In the theory of integration there is something called Improper integrals. They
are used to calculate integrals on R over some unbounded open sets. The limit of the
integration becomes ∞ or −∞. Note that, the theory of improper integrals is nothing
but the theory of extended integrals we already discussed. They are just restricted to R
in place of Rn i.e. n = 1.

12 Integrals as anti-derivatives

12.1 Fundamental theorem of calculus
Till now we were busy with developing the theory. Now it’s time to learn some basic
techniques to compute integrals. Before starting this section we will state an absurd
statement, which has no such concrete and well-defined meaning in the literature, but
for an intuitionist the statement makes sense. In the chapter we will observe to what
extent the statement is true.

f ′ = g =⇒
∫
g = f

Now its time to formalise the concepts.

Theorem 78 Let the function f : [a, b] → R be continuous. Define a function F : [a, b] →
R by F (x) =

∫ x
a
f(t)dt. (Note that t is just the name of the variable it’s just that F (x) =∫

[a,x]
f). Then F is differentiable on [a, b] and F ′(t) = f(t) for all t ∈ [a, b].

The proof of this is straightforward from the definitions. Our next theorem is the most
basic one.

Theorem 79 (Fundamental theorem of integral calculus(FTIC)) Suppose that
the function F : [a, b]→ R is differentiable and F ′ is continuous. i.e. F ∈ C1[a, b]. Then F ′

is integrable over [a, b] and ∫ b

a

F ′(x)dx = F (b)− F (a)

This can be proved using the previous theorem along with Mean value theorem.
In one-variable calculus one learns various techniques to find anti-derivatives; i.e.,

given continuous f , one finds F such that F ′ = f . Once this is done, evaluating
∫ b
a

is
mere plug-in to the FTIC. But since not all continuous functions have anti-derivatives
that are readily found, or even possible to write in an elementary form (for example,
try f(x) = e−x

2 or f(x) = sin(x2)), the FTIC has its limitations.
Another tool for evaluating one-dimensional integrals is the Change of Variable The-

orem. The idea is to transform one integral to another that may be better suited to the
FTIC.
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12.2 Substitutions
Theorem 80 (Change of Variable Theorem) Let φ : [a, b] → R be differentiable with
continuous derivative i.e. of class C1 and let f : φ[a, b]→ R be continuous. Then∫ b

a

(f ◦ φ)φ′ =

∫ φ(b)

φ(a)

f

this theorem is also known as Forward substitution formula. This is a very useful tech-
nique in terms of computation. For example let’s say we have to calculate

∫ e
1

(log x)2

x
dx.

We define φ : R+ → R by φ(x) = log x and f : R → R by f(x) = x2. Then we use this
formula and calculate

∫ 1

0
x2dx which is much easy to calculate than the actual function.

Corollary 81 (Inverse substitution formula) With the assumptions of theorem 80 and
an extra asumption that φ is invertible we have∫ b

a

f ◦ φ =

∫ φ(b)

φ(a)

f (φ−1)′

Now we will try to differentiate inside the integral sign.

Theorem 82 (Leibniz rule) Let φ, ψ : A → R be differentiable functions where A is a
bounded subset of R and φ(x) ≤ ψ(x) for all x ∈ A. Define S = {(x, t) | x ∈ A ∧ φ(x) ≤
t ≤ ψ(x)}. f : S → R be a differentiable function. We denote g′(x) by d

dx
g. Then

d

dx

∫ ψ(x)

φ(x)

f(x, t)dt = f(x, ψ(x))ψ′(x)− f(x, φ(x))φ′(x) +

∫ ψ)(x)

φ(x)

∂

∂x
f(x, t)dt

Special cases :
If f is a function of t only i.e. S = {t | φ(x) ≤ t ≤ ψ(x)} then

d

dx

∫ ψ(x)

φ(x)

f(t)dt = f(ψ(x))ψ′(x)− f(φ(x))φ′(x)

If φ and ψ are constant functions a and b then

d

dx

∫ b

a

f(x, t)dt =

∫ b

a

∂

∂x
f(x, t)dt

13 Fubini’s theorem and change of variable

13.1 Fubini’s theorem
With existence theorems for the integral now in hand, this section present tools to
compute integrals.
An n − fold iterated integral is n one-dimensional integrals nested inside each other,
such as ∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, x3, · · · , xn)dxndxn−1 · · · dx2dx1
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So we can think of this as following. In the first step let x1, x2, · · · , xn−1 act as constants.
First we do the integration by taking only xn as the variable and over [an, bn]. Now the
result is a function of the variables x1, x2, · · · , xn−1. similarly we think of x1, x2, · · · , xn−2

as constants and integrate the function of xn−1 over [an−1, bn−1]. And we follow the same
for n steps to get the final value of the integral.

Fubini’s Theorem says that under suitable conditions, the n dimensional integral is
equal to the n− fold iterated integral. The theorem thus provides an essential calcula-
tional tool for multi variable integration.

Theorem 83 (Fubini’s theorem) Let Θ = [a1, b1]× [a2, b2]× · · · × [an, bn] be a rectangle
in Rn. f : Θ→ R be a continuous function. Then∫

Θ

f =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, x3, · · · , xn)dxndxn−1 · · · dx2dx1

Proof of this theorem is simple using the concept of definition of integration repetitively.
Next we just solve some problems using this.

Exercise 84 Calculate
∫

[0,1]×[0,2]
xy2 and

∫
[0,1]3

x2 + y2 + z2

The best part of Fubini’s theorem is that the value of the integral doesn’t depend on
the order inside the n− fold integral. For example let R = [a, b]× [c, d]. Then the value
of
∫
R
f can be both of the following and they must be equal because

∫
R
f is unique.∫ d

c

∫ b

a

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dydx

Theorem 85 (Differentiation under integral sign) Consider a function f : [a, b]×[c, d]→
R. Let f is of class C1. Then the following exists and the expression holds true.

d

dx

∫ d

c

f(x, y)dy =

∫ d

c

∂

∂x
f(x, y)dy

Proof : Define g : [a, b] → R by g(x) =
∫ d
c
f(x, y)dy. Take x ∈ [a, b] arbitrarily. Then

we have g(x) =

=
∫ d
c
f(x, y)dy

=
∫ d
c

(∫ x
a

∂

∂x
f(x, y)dx+ f(a, y)

)
dy (use FTIC for F (x) = f(x, y))

=
∫ d
c

∫ x
a

∂

∂x
f(x, y)dxdy + C where C =

∫ d
c
f(a, y)dy

=
∫ x
a

∫ d
c

∂

∂x
f(x, y)dydx+ C use Fubini′s theorem

Now we apply theorem 78 on the function g(x) − C and get g′(x) =
∫ d
c

∂
∂x
f(x, y)dy.

Hence proved. �

Exercise 86 Calculate
∫ 1

0

∫ x=1

x=y
sin(x)
x

dxdy. (Hint : The way the integral is given it is diffi-
cult to calculate. We will interchange limits. Try to see the simple region, sketch that. Then
do a smart use of Fubini’s theorem and see that the integral is same as

∫ 1

0

∫ y=x

y=0
sin(x)
x

dydx
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13.2 Change of variable
Now we will discuss the change of variable formula and see it’s applications. Before
that recall that if f : Rn → Rm is differentiable, then it’s derivative is a m × n matrix.
Also recall what Jacobian is. (Section 2 and 3). The Change of Variable Theorem says
in some generality how to transform an integral from one coordinate system to another.

Theorem 87 (Change of variables) Let K ⊆ Rn is a compact, connected set and it’s
boundary has measure 0. Let A is an open set of Rn and K ⊆ A. Φ : A → Rn is of
class C1 such that Φ is injective on int(K) and det[J (Φ)(x)] 6= 0 for all x ∈ int(K). Let
f : Φ(K)→ R be a continuous function. Then∫

Φ(K)

f =

∫
K

(f ◦ Φ). | det[J (Φ)] |

This is a generalised statement and the proof is technical. But our goal from this
theorem is to look at some useful transformation of co-ordinates which we often use
in practical purposes. In next three subsections we discuss some usual change of co-
ordinates in R2 and R3.

13.3 Change of co-ordinates : polar, cylindrical, spherical
Polar co-ordinate

Figure 5: polar co-ordinate

Here we change our usual two dimensional (x, y) system to (r, θ) system. Let the
co-ordinate of a point p in usual Cartesian system is (x, y). Note that we can uniquely
determine this position by (r, θ) where r is the distance of this point from origin. i.e.
r =

√
x2 + y2. And then θ determines the angular position of this point in the circle of

radius r around origin. θ is the angle between the line joining origin and p and x axis.
If θ ranges over any fixed semi-open interval of length 2π on R, we have tan θ = y

x
.

We also have x = r cos θ and y = r sin θ. Now we see how we transform variables inside
the integrations. We will define the general mapping Φ for polar co-ordinates and then
depending on the question we will fix/restrict the domain and use theorem 87.
Define Φ : R2 → R2 by Φ(r, θ) = (r cos θ, r sin θ). In general, r ≥ 0 and 0 ≤ θ ≤ 2π. It is
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easy to check that Φ is of class C1. Now we see what J (Φ) is.

J (Φ) =

 ∂

∂r
r cos θ

∂

∂θ
r cos θ

∂

∂r
r sin θ

∂

∂θ
r sin θ

 =

[
cos θ −r sin θ
sin θ r cos θ

]

Hence det[J (Φ)] = r(cos2 θ + sin2 θ) = r.
Let A = {v ∈ R2 | a < ||v|| < b}. For example we integrate the function f(x, y) =

x2 + y2 over A. So we can observe that A = Φ([a, b] × [0, 2π]) = Φ(K). Φ is injective
on (a, b) × (0, 2π) = int(K). and 0 ≤ a < r < b for all r ∈ int(K). So det[J (Φ)] 6= 0 in
int(K). Now we are ready to calculate the integral.

Note that f(Φ(r, θ)) = f(r cos θ, r sin θ) = r2. Now
∫
A
f =

∫
K

(f ◦Φ)r =
∫ b
a

∫ 2π

0
r3dθdr.

So we have
∫
A
f = π

2
(b4 − a4).

Exercise 88 Calculate
∫ 1

0

∫ 1

0
ex

2+y2dxdy and
∫∞

0
e−x

2
dx

Cylindrical co-ordinate

Cylindrical co-ordinate is just a replica of polar co-ordinate in 3 dimension. We change
our usual (x, y, z) system to (r, θ, z) system. Where (r, θ) comes from the polar co-
ordinate transformation of (x, y) and z remains as it is.

Figure 6: cylindrical co-ordinate

Now we define the general co-ordinate changing mapping. Define Φ : R3 → R3 by
Φ(r, θ, z) = (r cos θ, r sin θ, z). In general, r ≥ 0, 0 ≤ θ ≤ 2π and z ∈ R. It is easy to
check that Φ is of class C1. Now we see what J (Φ) is.

J (Φ) =


∂

∂r
r cos θ

∂

∂θ
r cos θ

∂

∂z
r cos θ

∂

∂r
r sin θ

∂

∂θ
r sin θ

∂

∂z
r sin θ

∂

∂r
z

∂

∂θ
z

∂

∂z
z

 =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1
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Hence det[J (Φ)] = 1(r(cos2 θ + sin2 θ))− 0 + 0 = r.
Let C = {(x, y, z) | x2 + y2 ≤ 1, 0 ≤ z ≤ 2}. For example we integrate the function

f(x, y, z) = y2z over C. So we can observe that C = Φ([0, 1] × [0, 2π] × [0, 2]) = Φ(K).
Φ is injective on (0, 1) × (0, 2π) × (0, 2) = int(K). and 0 < r < 1 for all r ∈ int(K). So
det[J (Φ)] 6= 0 in int(K). Now we are ready to calculate the integral.

Note that f(Φ(r, θ, z)) = f(r cos θ, r sin θ, z) = r2 sin2 θ z. Now
∫
C
f =

∫
K

(f ◦ Φ)r =∫ 1

0

∫ 2π

0

∫ 2

0
r2 sin2 θ z r dzdθdr. So we have

∫
C
f = π

2
.

Exercise 89 Let Ω be the region bounded above by the sphere x2+y2+z2 = 6 and bounded
below by the paraboloid x2+y2 = z. Calculate

∫
Ω
z. (Hint : Use Fubini’s theorem for simple

region with change of co-ordinates. Final expression should be∫
Ω

z =

∫ 2π

0

∫ √2

0

∫ √6−r2

r2
zr dzdrdθ

Figure 7: (Exercise-89 ; Shaded portion is Ω)

Spherical co-ordinate

In 3 dimension we change usual (x, y, z) system to (r, θ, φ) system through the help of
spherical co-ordinate system. Let the co-ordinate of a point p in usual Cartesian system
is (x, y, z). Note that we can uniquely determine this position by (r, θ, φ) where r is the
distance of this point from origin. i.e. r =

√
x2 + y2 + z2. And then φ determines the

angular position of this point in the circle of radius r around origin on xy plane. φ is the
angle between the line joining origin and projection of p on xy plane and x axis. Also
θ is the angular position with respect to the z axis i.e. θ is the angle between positive z
axis and line joining the origin and p.

If φ ranges over any fixed semi-open interval of length 2π on R, and If θ ranges over
any fixed semi-open interval of length π on R, we have z = r cos θ, x = r cosφ sin θ and
y = r sinφ sin θ. Now we see how we transform variables inside the integrations. We
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Figure 8: Spherical co-ordinate

will define the general mapping Φ for spherical co-ordinates and then depending on the
question we will fix/restrict the domain and use theorem 87.

Define Φ : R3 → R3 by Φ(r, θ, φ) = (r cosφ sin θ, r sinφ sin θ, r cos θ). In general,
r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π It is easy to check that Φ is of class C1. Now we see
what J (Φ) is.

J (Φ) =


∂

∂r
r cosφ sin θ

∂

∂θ
r cosφ sin θ

∂

∂φ
r cosφ sin θ

∂

∂r
r sinφ sin θ

∂

∂θ
r sinφ sin θ

∂

∂φ
r sinφ sin θ

∂

∂r
r cos θ

∂

∂θ
r cos θ

∂

∂φ
r cos θ



=

cosφ sin θ r cosφ cos θ −r sinφ sin θ
sinφ sin θ r sinφ cos θ r cosφ sin θ

cos θ −r sin θ 0


Hence det[J (Φ)] = r2(sin3 θ cos2 φ+ sin θ cos2 θ cos2 φ+ sin3 θ sin2 φ+ sin θ cos2 θ sin2 φ) =
r2(sin3 θ + sin θ cos2 θ) = r2 sin θ.

Let S = {(x, y, z) | x2 + y2 + z2 = ρ2}. i.e. S is the solid sphere of radius ρ. For
example we integrate the function f(x, y, z) = 1 over S. i.e. we calculate the volume
of S. So we can observe that S = Φ([0, ρ] × [0, π] × [0, 2π]) = Φ(K). Φ is injective
on (0, ρ) × (0, π) × (0, 2π) = int(K). and 0 < r2 sin θ < ρ2 for all r ∈ int(K). So
det[J (Φ)] 6= 0 in int(K). Now we are ready to calculate the integral.

Note that f(Φ(r, θ, φ)) = f(r cosφ sin θ, r sinφ sin θ, r cos θ) = 1. Now
∫
S
f =

∫
K

(f ◦
Φ)r2 sin θ =

∫ ρ
0

∫ π
0

∫ 2π

0
r2 sin θdφdθdr. So we have

∫
S
f = 4

3
πρ3.

Exercise 90 Let Λ be the region bounded by x2 + y2 + z2 = 2 and z =
√
x2 + y2 in R3.

Calculate
∫

Λ
z. (Hint : See figure 9 and final expression after change of co-ordinate should

be
∫ 2π

0

∫ π
4

0

∫ √2

0
r3 cos θ sin θ dr dθ dφ

Exercise 91 (Pappu’s theorem) Let K be a compact set in the (x, z) plane lying to the
right of the z axis and with boundary of volume zero. Let S be the solid obtained by

rotating K about the z axis in R3. Also x =

∫
K
x

area(K)
Then

vol(S) = 2πx area(K)
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Figure 9: (Ex - 90 ; Shaded portion is Λ)

Hint : Use change of variable for cylindrical co-ordinate
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Part III

Vector Calculus
14 Scalar and vector field
From this section to the last one we cover a whole new branch namely vector calculus.
We define integrations over curves and surfaces. This has a huge application to different
fields of physics.

We study the calculus of vector fields. (These are functions that assign vectors to
points in space.) Speaking in a physicist’s language we define line integrals (which can
be used to find the work done by a force field in moving an object along a curve). Then
we define surface integrals (which can be used to find the rate of fluid flow across a
surface). The connections between these new types of integrals and the single, double,
and triple integrals that we have already met are given by the higher-dimensional ver-
sions of the Fundamental Theorem of Calculus, Green’s Theorem, Stokes’ Theorem, and
the Divergence Theorem.

Recall that if f is a function from Rn to Rm we can write
f(x) = (f1(x), f2(x), · · · , fm−1(x), fm(x)) for all x ∈ Rn. Here fi s can be considered
as functions from Rn to R. These fi s are just composition of f and projection map-
pings. (Go back to section 3.3 for detailed discussion). If e1, e2, · · · , em is the standard
orthonormal basis of Rm, we write f(x) = f1(x)e1 + f2(x)e2 + · · · + fm(x)em. Now we
formally define vector and scalar field.

Definition 92 (Scalar field) A ⊆ Rn. A scalar field on A is a function from a subset A of
Rn to R.

Definition 93 (Vector field) A ⊆ Rn(n > 1). A vector field on A is a function from a
subset A of Rn to Rn. So if f is a vector field on Rn we have f = Σn

i=1fiei where {ei}n1 is
the standard orthonormal basis of Rn and fi is scalar field for all 1 ≤ i ≤ n.

From now we will use a notation for our standard orthonormal basis of R2 and R3.
In R2 we have î = (1, 0), ĵ = (0, 1). Similarly in R3 we have î = (1, 0, 0), ĵ = (0, 1, 0), k̂ =
(0, 0, 1).

Let F be a vector field on R2. The best way to picture a vector field is to draw
the arrow representing the vector F (x, y) starting at the point (x, y). Of course, it’s
impossible to do this for all points , but we can gain a reasonable impression of by
doing it for a few representative points in as in Figure 10. Since F (x, y) is a two-
dimensional vector, we can write it in terms of its component functions and as follows.
F (x, y) = P (x, y)̂i + Q(x, y)̂j where P and Q are scalar fields. The next figure (Figure-
10) shows drawings of three vector fields, F1(x, y) = (−y, x), F2(x, y) = (y, sinx) and
F3(x, y) = log(1 + y2)̂i + log(1 + x2)̂j respectively.

Now we give some practical examples of vector fields. Newton’s Law of Gravitation
states that the magnitude of the gravitational force between two objects with masses
m and M is |F | = mMG

r2
where r is the distance between the objects and G is the

gravitational constant. (This is an example of an inverse square law.) Let’s assume that
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Figure 10: Vector fields on R2

the object with mass m is located at the origin in R3. And the position of the object
with mass M is (x, y, z). We also have r =

√
x2 + y2 + z2 i.e. r =‖ (x, y, z) ‖. Then the

gravitational force exerted on this second object acts toward the origin, and the unit
vector in this direction is −1

r
(x, y, z). Therefore the gravitational force acting on the

object at (x, y, z) is a vector field G : R3 → R3 by

G(x, y, z) = − mMG

‖ (x, y, z) ‖3
(x̂i + yĵ + zk̂)

Another example is electric field. Suppose an electric charge Q is located at the
origin. According to Coulomb’s Law, the electric force F (v) exerted by this charge on a
charge q located at a point (x, y, z) with position vector v is F (v) = εqQ

‖v‖3v, where ε is a
constant (that depends on the units used). For like charges, we have qQ > 0 and the
force is repulsive; for unlike charges, we have qQ < 0 and the force is attractive. Notice
the similarity between Formulas for G and F . Both vector fields are examples of force
fields. Instead of considering the electric force , physicists often consider the force per
unit charge i.e.

E(x, y, z) =
εQ

‖ v ‖3
(x̂i + yĵ + zk̂)

. Then is a vector field E : R3 → R3, called the electric field of Q. Now we define some
new concepts.

Definition 94 (Gradient field) Let f be a scalar field on Rn such that all its first order
partial derivatives exist. Then gradient field of f is a vector field on Rn defined as ∇f :

Rn → Rn by ∇f(x) =

[
∂

∂x1

f(x)
∂

∂x2

f(x) · · · · · · ∂

∂xn
f(x)

]
Definition 95 (Conservative vector field and potential) A vector field f on Rn i.e. f :
Rn → Rn is called a conservative vector field on Rn if f = ∇g for some scalar field
g : Rn → R. In this situation g is called a potential function for f .

Not all vector fields are conservative, but such fields do arise frequently in physics.
For example, observe that gravitational field G is a conservative vector field. Because
G = ∇fG where the scalar field fG is defined by

fG(x, y, z) =
mMG

‖ (x, y, z) ‖
This fG is called gravitational potential.

Exercise 96 Check whether electric field E is a conservative vector field. If so find electric
potential.
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15 Line integrals
As of now we haven’t defined curves or surfaces. There is a field of mathematics called
”Differential geometry” where we need to define curves and surfaces properly. Then we
get a concept of parametrized curves and parametrized surfaces. But to do integrations
over curves or surfaces in a ”Multivariable calculus” course we directly jump into the
simplified definition of parametrized curves and surfaces.

15.1 Curves on R2

In this section we define an integral that is similar to a single integral except that in-
stead of integrating over an interval [a, b], we integrate over a curve C. Such integrals
are called line integrals, although “curve integrals” would be better terminology. They
were invented in the early 19th century to solve problems involving fluid flow, forces,
electricity, and magnetism.

Definition 97 (Curve/Parametrized curve) Let I be an interval in R. (It can be closed,
open or semi-open). A parametrized curve α on a subset U of R2 is a smooth 1 function
α : I → U . The image C of this function α i.e. C = α(I) is called a curve on U .

Let I = [a, b] and α : I → R2 be smooth. Note that α(t) = (α1(t), α2(t)) for all t ∈ I.
Also α1 and α2 are smooth functions from I to R because they are just compositions of
projections and smooth function α.

So if we say C is a curve on R2 there is a parametrized equation of C i.e.

C = (x, y) where x = x(t) and y = y(t); a ≤ t ≤ b

Don’t get confused between the same notation x and y for variables and smooth func-
tion. We just mean that there exists α : [a, b] → R2 is a smooth function such that
α(t) = (x(t), y(t)) for al a ≤ t ≤ b. And C = Im(α).

So whenever we will talk about a parametrized curve we will think of the smooth
function α but geometrically the curve is just Im(α). We can call both of them curves
depending on the context. But technically speaking C = Im(α) is the curve and α
is called it’s parametrization. So we call α as parametrized curve. The function α is
abstract, it doesn’t have a physical interpretation so this is just parametrization but we
can see Im(α) as a physical object in R2 so that is the curve.

Velocity, speed and length

Let α : I → R2 be a parametrized curve such that α(t) = (x(t), y(t)) for all t ∈ I. Velocity
of α at t0 is just the derivative of α at t0. So for any t ∈ I it is defined by

α̇(t) = Dα(t) =

[
d
dt
x(t)

d
dt
y(t)

]
1In general in the definition of parametrized curve α we just require α to be continuous, but

in the context of integration almost everywhere we need our curve to be smooth. So we fix the
smoothness of α as a definition throughout.
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Note that as x and y are functions from I → R we have d
dt
x(t) = ∂

∂t
x(t).

The speed of α at t0 is the norm of velocity of it at t0. So for any t ∈ I it is defined by

‖ α̇(t) ‖=
√

(
d

dt
x(t))2 + (

d

dt
y(t))2

Now we are going to define the most crucial tool for line integrals. i.e. the length
of a parametrized curve. It is nothing but the integral of the speed of it over I i.e.
l(α) =

∫
I
‖ α̇(t) ‖ dt.

Definition 98 (Length of a curve/parametrized curve) Let α : [a, b]→ R2 be a parametrized
curve such that α(t) = (x(t), y(t)) for all a ≤ t ≤ b. Hence C = Im(α) is the curve on R2.
Then the length of C is same as the length of the parametrization α given by

l(C) = l(α) =

∫ b

a

√
(
d

dt
x(t))2 + (

d

dt
y(t))2dt

Now if a curve C on R2 is given to us we know there exists a parametrization α such
that Im(α) = C. But now the question we need to ask is whether such parametrization
is unique and the answer is no. There can be some other parametrization β of C such
that Im(β) = C. So now we state that the length of a curve C doesn’t depend on the
choice of its parametrization α. Readers can take this statement for granted or try to
prove. The proof is not so trivial but easy.

15.2 Orientation of curves
Once again this ”orientation” is a technical term one can rigorously learn after properly
define curves and surfaces. But as we have only defined it through parametrization we
will only have a geometrical intuition of orientation.

Let α : [a, b] → R2 is parametrization of curve C. We need to understand that we
can traverse through C in two ways, one is from α(a) to α(b) with increasing values of
t. And another one is the reverse of it i.e. from α(b) to α(a) with decreasing values of
t. Depending on these directions we can put arrows on our curve. Note that there can
be exactly two choices of arrows in a particular point of C depending on the way we
traverse. In case of the first way of traversing we say C has a positive orientation. The
next way is called negative orientation of C.

A oriented curve C of a parametrized curve α on R2 is a curve together with a
choice of orientation of it. The following example will explain it better. Consider the
boundary of the unit circle i.e. C = {(x, y) ∈ R2 | x2 + y2 = 1} with a parametrization
α : [0, 2π] → R2 by α(θ) = (cos θ, sin θ). Figure 11 shows the two different orientations
of C. In the first image we traverse through the curve from α(2π) to α(0) i.e. with
decreasing value of t. Hence this has a negative orientation. For the reverse traversing
the next one has positive orientation. So any curve can have exactly two oriented curves
obtained from it.
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Figure 11: Orientation of unit circle in R2

15.3 Line integration on R2

Now we are ready to define our main concept i.e line integrals. C is a curve on R2.
Let α : [a, b] → R2 be the parametrization of C such that α(t) = (x(t), y(t)) for all t.
f : C → R is a bounded function with it’s set of point of discontinuity having measure
zero. Then the line integral of f along C equals∫

C

f(x, y)dC =

∫ b

a

f(x(t), y(t))

√
(
d

dt
x(t))2 + (

d

dt
y(t))2dt

We can also think of this in terms of Riemann sum. Recall the special case of Rie-
mann sum discussed at the end of section 9. Let ∆x = b−a

n
and hence a, a + ∆x, a +

2∆x, · · · , a + n∆x is a partition of [a, b] Let ti = a + i∆x. Let ti be the midpoint of the
interval [a+(i−1)∆x, a+ i∆x]. So informally speaking, we are trying to find a partition
of C by applying α to the ti s. But the concept of length of partition will be a bit different
here. Define ∆ci =

∫ ti
ti−1
‖ α̇(t) ‖ dt. In this set up the line integral of f along C equals∫
C

f(x, y)dC = lim
n→∞

Σn
i=1f(x(ti), y(ti))∆ci

Again we state a non-trivial fact that the line integration of f along C doesn’t depend
on the choice of parametrization if the orientation of them are same. i.e. if orientation
of C is same (either positive for both or negative for both) for two parametrized curves
α and β then the following are equal.∫ b

a

f(α(t)) ‖ α̇(t) ‖ dt =

∫
C

fdC =

∫ d

c

f(β(t)) ‖ β̇(t) ‖ dt

where [a, b] and [c, d] are domains of α and β respectively. If orientations of C are
different for two different curves then also the absolute value of the integral is same but
one of them is positive and another one is negative.

Now we will see examples. Let C be the upper half of the unit circle x2 + y2 = 1.
Calculate

∫
C

(2 + x2y)dC. First we find any parametrization of C. Define a parametriza-
tion α : [0, π]→ R2 by α(t) = (cos t, sin t). Now

∫
C

(2 + x2y)dC

=
∫ π

0
(2 + cos2 t sin t)

√
( d
dt

cos t)2 + ( d
dt

sin t)2dt =
∫ π

0
(2 + cos2 t sin t)

√
sin2 t+ cos2 tdt =∫ π

0
(2 + cos2 t sin t)dt =

[
2t− cos3 t

3

]π
0

= 2π + 2
3
.
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There are physical interpretations of line integrals. For example, suppose we are
given the semi circular wire C as the above example. Let f denote the mass den-
sity ρ(x, y) of the wire. Then the above integral calculates the mass m of the wire.
And if (X, Y ) is the centre of mass of the wire then X = 1

m

∫
C
xρ(x, y)dC and Y =

1
m

∫
C
yρ(x, y)dC.

Now we define line integrals of f along C with respect to a single variable x or
y. With the set up of the previous definition now we define two more things e.g.∫

C

f(x, y)dx =

∫ b

a

f(x(t), y(t))x′(t)dt ;

∫
C

f(x, y)dy =

∫ b

a

f(x(t), y(t))y′(t)dt

Exercise 99 Let C be a curve on R2 and P and Q be two continuous functions from C to
R2. Then

∫
C
P +Q =

∫
C
P +

∫
C
Q.

15.4 Curves on R3

Previously on R2 we had a parametrization α(t) = (x(t), y(t)). Now when we define
parametrization of a curve on R3 this becomes a smooth function from some interval I
of R to R3 i.e. α(t) = (x(t), y(t), z(t)). Similarly we can define velocity, length and speed
of it as earlier.

For example let C be the straight line joining u = (u1, u2, u3) and v = (v1, v2, v3).
Then a parametrization of C is the following. For 0 ≤ t ≤ 1 define x(t) = tu1 + (1− t)v1,
y(t) = tu2 + (1− t)v2 and z(t) = tu3 + (1− t)v3.

15.5 Line integrations on R3

C is a curve on R3. Let α : [a, b] → R3 be the parametrization of C such that α(t) =
(x(t), y(t), z(t)) for all t. f : C → R is a bounded function with it’s set of point of
discontinuity having measure zero. Then the line integral of f along C equals∫

C

f(x, y)dC =

∫ b

a

f(x(t), y(t), z(t))

√
(
d

dt
x(t))2 + (

d

dt
y(t))2 + (

d

dt
z(t))2dt

Similarly we can define the Riemann sum criterion with a little modification of that
of R2.

15.6 Curves and line integral on higher dimensions
Having a solid background and concept from R2 and R3 we can develop on it. The
parametrized curve on Rn is a smooth function α from some interval I of R to Rn i.e.
α(t) = (α1(t), α2(t), · · · , αn(t)) for all t ∈ I. Now we can define line integration on Rn

in similar manner.

15.7 Line integrals of vector fields
From the beginning (section 9) till now we have only integrate real valued function.
But now for the first time we will go one step further and integrate vector fields on Rn
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i.e. we will integrate functions of n components in general. The concept of integrating
vector fields was inspired by a physical activity i.e. calculating work done by a given
force field in moving a particle from one point to another.

Though we will define for any n, in practical purposes we always have two cases
n = 2 or 3. Let C be a curve on Rn with it’s parametrization r(t); a ≤ t ≤ b. So r(t) =
((r1(t)), (r2(t)), · · · , (rn(t))). Let F be a continuous vector field on C i.e. F : C → Rn

continuous. Define T (t) =
ṙ(t)

‖ ṙ(t) ‖
. Then the integral of F along C is defined by

∫
C

F · dr =

∫ b

a

F (r(t)) · ṙ(t) dt =

∫
C

F · T dC

One can informally think of T (t) as an unit tangent vector to C at r(t). For concrete
definition we have to wait till section 17.3.

Exercise 100 Find the work by the force field F (x, y) = x2î − xyĵ in moving a particle
along the quarter circle r(t) = cos t̂i + sin t̂j; 0 ≤ t ≤ π

2
.

Solution : F (r(t)) = cos2 t̂i−cos t sin t̂j and ṙ(t) = − sin t̂i+cos t̂j. Therefore the work
done by F =

∫
C
F ·dr =

∫ π
2

0
F (r(t)) · ṙ(t) dt =

∫ π
2

0

(
cos2 t̂i−cos t sin t̂j

)(
− sin t̂i+cos t̂j

)
=∫ π

2

0
−2 cos2 t sin tdt =

2 cos3 t

3

]π
2

0
= −2

3
.

Exercise 101 Let C and −C denote the curve C on Rn with positive and negative orien-
tation respectively. r is the parametrization of C. F is a vector field on C. Show that∫
−C F · dr = −

∫
C
F · dr

Exercise 102 Let C be the curve given by x(t) = t, y(t) = t2, z(t) = t3; 0 ≤ t ≤ 1.
Calculate

∫
C
xyeyz dy

Figure 12: Exercise - 104
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Exercise 103 Show that a constant force field does zero work on a particle that moves
uniformly (constant speed) once around the circle x2 + y2 = 1. Is this also true if the force
field is given by F (x, y) = π(x, y) ?

Exercise 104 Experiments show that a steady current I in a long wire produces a magnetic
field B that is tangent to any circle that lies in the plane perpendicular to the wire and
whose center is the axis of the wire (as in the figure). Ampère’s Law relates the electric
current to its magnetic effects and states that

∫
C
B · dr = µ0I where I is the net current

that passes through any surface bounded by a closed curve C, and µ0 is a constant called the
permeability of free space. By taking C to be a circle with radius, show that the magnitude
B of the magnetic field B at a distance r from the center of the wire is B = µ0I

2πr

15.8 The fundamental theorem for line integration
Recall theorem 79 (section 12) i.e. if F is a function of class C1 on [a, b] then∫ b

a

F ′(x)dx = F (b)− F (a)

We also called this the Net Change Theorem. The integral of a rate of change is the
net change. If we think of the gradient vector ∇f of a function of two or three variables
as a sort of derivative of f , then the following theorem can be regarded as a version of
the Fundamental Theorem for line integrals.

Theorem 105 Let C be a curve on Rn (Mostly we consider n = 2 or 3) with it’s parametriza-
tion r(t); a ≤ t ≤ b. Let f be a differentiable function from C to R such that its gradient
vector field ∇f is continuous i.e. f is of class C1. Then∫

C

∇f · dr = f(r(b))− f(r(a))

The proof of this theorem directly follows from the definition of line integration of
vector field and the fundamental theorem of calculus.

Theorem 105 says that we can evaluate the line integral of a conservative vector
field (the gradient vector field of the potential function f) simply by knowing the value
of it at the endpoints of C. In fact, Theorem 105 says that the line integral of ∇f is the
net change in f .

15.9 Independence of path
Let C be a curve on Rn such that it has parametrization α : I → Rn. Let a and b be the
endpoints of I with a < b. Then α(a) and α(b) are the initial and end points respectively
of the positive oriented C and α(b) and α(a) are the initial and end points respectively
of the negative oriented −C.

Exercise 106 Prove or disprove. Let F be a vector field on Rn and C1 and C2 be two
different curves on Rn with same initial and end points. Then

∫
C1
F · dr1 =

∫
C2
F · dr2

where r1 and r2 are parametrizations of C1 and C2 respectively.

60



Hint : This exercises asks whether the value of line integration of a vector field between
two points depends on the curve joining them. The answer is yes. i.e. there exists C1

and C2 such that
∫
C1
F · dr1 6=

∫
C2
F · dr2. Let F be a vector field on R2 defined by

F (x, y) = y2î + x̂j. Take C1 as the line segment joining (−5,−3) to (0, 2) and C2 as the
parabola x = 4 − y2 from (−5,−3) to (0, 2). Find suitable parametrization r1 and r2 of
them and calculate them to show that

∫
C1
F · dr1 = −5

6
and

∫
C2
F · dr2 = 245

6
.

So we have seen that in general the line integral of a vector field is path dependent.
But the next theorem (theorem 107) shows that if the vector field is conservative i.e. it’s
a gradient of some scalar field then the line integral of a vector field is path independent.
Before that we define a notion of closed curve.

A curve on Rn is closed if it has same initial and end points. i.e. Let C be a curve
on Rn with parametrization r(t); a ≤ t ≤ b. Then C is said to be a closed curve if
r(a) = r(b).

Theorem 107 Let f be a continuous vector field on an open connected set S of Rn. Then
the following are equivalent.

1. f is gradient of some scalar field on S i.e. f = ∇g for some g : S → R.

2. The line integral of f is independent of the path. i.e. If a, b ∈ S and C1 and C2 are
two curves on S with initial point a and end point b, then

∫
C1
f =

∫
C2
f .

3. The line integral of f is zero along every closed path on S i.e. if C is a closed curve
on S then

∫
C
fdC = 0.

The above theorem gives a criterion of determining whether a vector field is conser-
vative (gradient field of some scalar field) in terms of line integration. But now we will
see some other criterion for a vector field to be conservative.

Theorem 108 Let f be a vector field of class C1 on an open connected set S of Rn. Then f

is conservative if and only if
∂fi
∂xj

(x) =
∂fj
∂xi

(x) for all 1 ≤ i, j ≤ n and for all x ∈ S.

The above statement is same as saying f is gradient of some scalar field on S if and only if
the matrix J f(x) is symmetric for all x ∈ S.

Exercise 109 Define a vector field F on R2 by F (x, y) = (yex + sin y)̂i + (ex + x cos y)̂j.
Check whether F is conservative. If so, find it’s potential scalar field.

Exercise 110 Let C denote the curve the earth follows to revolve around the sun. Suppose
the earth was a km apart from the sun on March 20, 2020 and it was b km apart from
the sun on August 20, 2020. Let G be the gravitational constant and mE and mS are the
masses of the earth and the sun respectively. Find the work done by the gravitational force
due to movement of the earth around the sun in between two given dates.

We will use a new notation now. If C is a closed curve we denote
∫
C
f by

∮
C
f .
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16 Green’s theorem
Let C be a curve with parametrization r(t); a ≤ t ≤ b. We already know that C closed
if r(a) = r(b). We say C is simple if α is one to one in [a, b]. We say a closed curve C is
simple if α is one to one in [a, b).

On R2 Green’s Theorem gives the relationship between a line integral around a
simple closed curve C and a double integral over the plane region R bounded by C.
(See Figure 13.) We assume that R consists of all points inside C as well as all points
on C. In stating Green’s Theorem we use the convention that the positive orientation
of a simple closed curve refers to a single counter-clockwise traversal of C. Thus if C is
given by the vector function r(t); a ≤ t ≤ b, then the region is always on the left as the
point traverses. (See Figure 13.)

Let f be a vector field on R2 i.e. f(v) = (f1(v), f2(v) for scalar fields f1 and f2 on
R2. Then observe that

∫
C
f · dr =

∫ b
a
f(r(t)) · ṙ(t) dt =

∫ b
a
f(x(t), y(t)) · (ẋ(t), ẏ(t)) dt =∫ b

a

[
f1(x(t), y(t))ẋ(t) +f2(x(t), y(t))ẏ(t)

]
dt =

∫
C
f1 dx+f2 dy. (Check section 15.2 to see

the meaning of
∫
C
g(x, y) dx and

∫
C
g(x, y) dy)

Figure 13: Green’s theorem

Theorem 111 (Green’s theorem) Let S be an open set in R2. P and Q are two scalar
fields on S of class C1. C is a simple closed curve on S. Let R be the plane region enclosed
by C and C itself i.e. R = C ∪ I(C)) where I(C) is the region inside the curve C. Then∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
C

P dx+Q dy

Exercise 112 Evaluate the following

1.
∮
C

(3y − esinx)dx+ (7x+
√
y4 + 1)dy where C is the circle x2 + y2 = 9.

2.
∮
C
y2 dx+3xy dy where C is the boundary of the semi-circular region D in the upper

half plane between the circles x2 + y2 = 1 and x2 + y2 = 4.

Exercise 113 Use Green’s theorem to prove the change of variable formula for double
integrals.
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17 Curl and Divergence

17.1 Curl
Let F (x, y, z) = P î + Qĵ + Rk̂ is a vector field on R3 such that P,Q,R are scalar fields
and all of their first order partial derivatives exist. Then

curl F =
(∂R
∂y
− ∂Q

∂z

)̂
i +
(∂P
∂z
− ∂R

∂x

)̂
j +
(∂Q
∂x
− ∂P

∂y

)
k̂

Define an operator ∇ =
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂. Though this ’operator’ is a technical term,

one can think of this as a symbol with the following meanings associated with it.If f is
a scalar field on R3 then

∇f =
∂f

∂x
î +

∂f

∂y
ĵ +

∂f

∂z
k̂

This we already knew from the concepts of Jacobian. But our next goal is to define
curl in terms of this ∇ operator. Let u = âi + b̂j + ck̂ and v = d̂i + êj + f k̂ be two vectors
of R3. We define their cross product as follows.

u× v =

∣∣∣∣∣∣
î ĵ k̂
a b c
d e f

∣∣∣∣∣∣ =
(
bf − ec

)̂
i +
(
dc− af

)̂
j +
(
ae− bd

)
k̂

So for the previously defined F we have

∇× F =

∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣ =
(∂R
∂y
− ∂Q

∂z

)̂
i +
(∂P
∂z
− ∂R

∂x

)̂
j +
(∂Q
∂x
− ∂P

∂y

)
k̂ = curl F

For example, if F (x, y, z) = xzî + xyzĵ− y2k̂ then we can calculate and observe that
curl F = −y(2 + x)̂i + x̂j + yzk̂. The next theorem says that curl of a gradient field is
zero.

Theorem 114 Let f be scalar field on R3 and f is of class C2 then

curl (∇f) = 0

Proof : We have curl (∇f) = ∇× (∇f) =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
∂f

∂x

∂f

∂y

∂f

∂z

∣∣∣∣∣∣∣∣∣∣
=
( ∂2f

∂y∂z
− ∂2f

∂z∂y

)̂
i +
( ∂2f

∂z∂x
−

∂2f

∂x∂z

)̂
j +
( ∂2f

∂x∂y
− ∂2f

∂y∂x

)
k̂ = 0̂i + 0̂j + 0k̂ = 0. This 0 comes from Claircut’s theorem.

The converse of this theorem is not true in general. But the next theorem shows that
the converse is true if the domain of the vector field is whole R3.
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Theorem 115 Let F : R3 → R3 is a vector field such that all its component functions are
of class C1. i.e. if F (x) = (F1(x), F2(x), F3(x)) then F1, F2, F3 are of class C1.
Let curl F = 0. Then F is a conservative vector field i.e. F = ∇f for some scalar field f
on R3.

17.2 Divergence

Let F (x, y, z) = P î + Qĵ + Rk̂ is a vector field on R3 such that P,Q,R are scalar fields

and
∂P

∂x
,
∂Q

∂y
,
∂R

∂z
exist. Then

div F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

So stating in terms of ∇ operator we have

∇ · F =
( ∂
∂x

î +
∂

∂y
ĵ +

∂

∂z
k̂
)
·
(
P î +Qĵ +Rk̂

)
=
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
= div F

The next theorem shows that divergence of curl is zero.

Theorem 116 Let F (x, y, z) = P î +Qĵ + Rk̂ is a vector field on R3 such that P,Q,R are
scalar fields of class C2. Then

div curl F = 0

Proof : div curl F = ∇ · (∇× F )

=
( ∂
∂x

î +
∂

∂y
ĵ +

∂

∂z
k̂
)
·
((∂R

∂y
− ∂Q

∂z

)̂
i +
(∂P
∂z
− ∂R

∂x

)̂
j +
(∂Q
∂x
− ∂P

∂y

)
k̂
)

=
∂

∂x

(∂R
∂y
− ∂Q

∂z

)
+

∂

∂y

(∂P
∂z
− ∂R

∂x

)
+

∂

∂z

(∂Q
∂x
− ∂P

∂y

)
=

∂2P

∂y∂z
− ∂2P

∂z∂y
+

∂2Q

∂z∂x
− ∂2Q

∂x∂z
+

∂2R

∂x∂y
− ∂2R

∂y∂x
= 0. This 0 comes from Claircut’s

theorem.

Laplace operator

As we already defined the ∇ operator now we will define something more. Let f be a
scalar field on R3 with it’s gradient vector field ∇f . Then we have

div(∇f) = ∇ · (∇f) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

So Laplacian / Laplace operator ∇2 for a scalar field f is defined as follows

∇2(f) = ∇ · ∇(f)
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17.3 Vector forms of Green’s theorem
Let F = P î + Qĵ be a vector field on R2. Assume all the hypothesis of the Green’s
theorem (theorem 111) and recall that we have∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
C

P dx+Q dy =

∮
C

F · dr

Let’s change the set up a bit and regard F as a vector field on R3 by F = P î+Qĵ+0k̂.
Then we have

curl F =

∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
P Q 0

∣∣∣∣∣∣∣∣ =
(∂Q
∂x
− ∂P

∂y

)
k̂

Therefore curl F · k̂ = (
∂Q

∂x
− ∂P

∂y
)k̂ · k̂ = (

∂Q

∂x
− ∂P

∂y
). So now we are ready to re-write

the Green’s theorem in vector form. And that is as follows∮
C

F · dr =

∮
C

F · T dC =

∫ ∫
R

(curl F ) · k̂ dA

Note that this dA is just a simplified notation for dxdy which represents area integral
i.e. integration on R2. Similarly in R3 we use dV in place of dxdydz and it represents
volume integral. Find the meaning of the notation

∮
C
F · T dC where we defined line

integrations of vector field.
The above equation expresses the line integral of the tangential component of F

(See figure 14) along C as the double integral of the vertical component of curl F over
the region R enclosed by C. We now derive a similar formula involving the normal
component of F .

Figure 14: Tangent and normal to C at r(t)

Let C has the parametrization r(t) = (x(t), y(t)); a ≤ t ≤ b. Then we define unit
tangent vector T (t) to C at the point r(t) as

T (t) =
ṙ(t)

‖ ṙ(t) ‖
=

x′(t)

‖ ṙ(t) ‖
î +

y′(t)

‖ ṙ(t) ‖
ĵ

Our next goal is to define a unit normal vector n(t) to C at the point r(t). Note that n(t)
must be perpendicular to T (t) ie. n(t) · T (t) = 0. So we have

n(t) =
y′(t)

‖ ṙ(t) ‖
î− x′(t)

‖ ṙ(t) ‖
ĵ
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We can also take −n(t) as normal but that will be inward to the curve whereas n(t) is
outward and considered widely as convention. (See figure 14)

First we define a function F · n from C to R by (F · n)(r(t)) = F (r(t)) · n(t). Now
from the definition of line integral we have

∮
C
F · n dC =

∫ b
a
(F · n)(r(t)) ‖ ṙ(t) ‖

dt =
∫ b
a

[P (x(t), y(t)) y′(t)

‖ ṙ(t) ‖
− Q(x(t), y(t)) x′(t)

‖ ṙ(t) ‖
]
‖ ṙ(t) ‖ dt =

∫ b
a

(
P (x(t), y(t)) y′(t) −

Q(x(t), y(t)) x′(t)
)
dt =

∫
C
P dy−Q dx =

∫ ∫
R

(∂P
∂x

+
∂Q

∂y

)
dA. (The last equality follows

from Green’s theorem.
So now we have second vector form of Green’s theorem i.e.∮

C

F · n dC =

∫ ∫
R

div(F ) dA

Exercise 117 f and g are scalar fields of class C2. Use Green’s theorem and the notations
used there to prove the following identities.

1.
∫ ∫

R
f∇2g dA =

∮
C
f(∇g) · n dC −

∫ ∫
R
∇f · ∇g dA

2.
∫ ∫

R

(
f∇2g − g∇2f

)
dA =

∮
C

(
f∇g − g∇f

)
· n dC

Exercise 118 This exercise demonstrates a connection between the curl vector and rota-
tions. Let B be a rigid body rotating about the z axis. The rotation can be described by the
vector w = −ωk̂, where ω is the angular speed of B, i.e, the tangential speed of any point P
in B divided by the distance d from the axis of rotation. Let r = x̂i+yĵ+ zk̂ be the position
vector of P .

1. By considering the angle θ in figure 15, show that the velocity field of B is given by
v = −w× r

2. Show that v = −ωyî + ωx̂j

3. Show that v = 2w

Exercise 119 Maxwell’s equations relating the electric field E and magnetic fieldB as they
vary with time in a region containing no charge and no current can be stated as follows:

• div E = 0

• div H = 0

• curl E = −1

c

∂H

∂t

• curl H =
1

c

∂E

∂t

where c is the speed of the light. Use these equations to prove the following

1. ∇× (∇× E) = − 1

c2

∂2E

∂t2

2. ∇× (∇×H) = − 1

c2

∂2H

∂t2

3. ∇2E =
1

c2

∂2E

∂t2

4. ∇2H =
1

c2

∂2H

∂t2
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Figure 15: Exercise-118

18 Surface integrals
As we stated at the beginning of Line integrals (section 15) here also we will not give
the definition of surfaces. We will only talk about parametrized surfaces like we only
talked about parametrized curves while doing line integrals.

18.1 Surfaces on R3

In the same way that we describe a space curve C by a vector function r(t) of a single
parameter , we can describe a surface S by a vector function r(u, v) of two parameters
u and v.

Definition 120 (Parametrized surface) Let Q be a rectangle of R2. A parametrized sur-
face r on subset A of R3 is a function r : Q → A. And the image of this function i.e.
r(Q) = S is called a surface on A.

In the above definition if r is continuous we call S a continuous surface.
So if S is a surface on R3 then there exists a parametrization r : Q→ R3 where Q is

a rectangle of R2 and r(u, v) = (x(u, v), y(u, v), z(u, v)) for all (u, v) ∈ Q. i.e. x, y, z are
component functions of r.

Now we will see some examples of parametrizations of surfaces. Note that, given
two points in R2 there exists a unique straight line joining them. Similarly, given three
points in R3 we have an unique triangle. Let a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3)
be three points. We find the parametrized equation of the triangle having these as ver-
tices. Let Q = [0, 1]× [0, 1]. So we define r : Q→ R3 by r(u, v) = (x(u, v), y(u, v), z(u, v))
where x(u, v) = uva1+(1−u)vb1+(1−v)c1, y(u, v) = uva2+(1−u)vb2+(1−v)c2, z(u, v) =
uva3 + (1− u)vb3 + (1− v)c3.

Suppose we have some equation of surface given, where the third variable is a func-
tion of other two. In such cases we have a inherited parametrization. For example
consider the paraboloid z = x2 +2y2. We have the parametrization x(u, v) = u, y(u, v) =
v, z(u, v) = u2 + 2v2; (u, v) ∈ R2.
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Exercise 121 Find a parametrization of the sphere x2 + y2 + z2 = 1. (Hint : Spherical
co-ordinate)

Surface of revolution

Figure 16: Surface of revolution

Here we start with a positive function y = f(x) in xy plane and then rotate the graph
of the function around x axis. So it forms a surface on R3. We find a parametrization
of this surface S. Let f : [a, b] → R. Then the parametrization of S is the following.
r : [a, b]× [0, 2π]→ R3 by

x(u, v) = u, y(u, v) = f(u) cos v, z(u, v) = f(u) sin v

because for a fixed u, (y, z) lies on the circle of radius f(u) on yz plane. This S is
called the surface of revolution of y = f(x) because it is obtained by rotating y = f(x).
Observe that surface of revolution of a straight line segment is the curved surface of a
cylinder.

Tangent plane

Figure 17: Tangent plane

If we have a curve on R2 and a point p on it then we can have only two tangents to
C at p in two opposite directions. But in case of a surface we can have infinitely many

68



tangents at a point. And all of them belong to a plane called tangent plane. Here we
are given a surface S, its parametrization r with component functions x, y, z and a point
P0 = (a, b, c) on it. We find the parametrization of the tangent plane at P0 = r(u0, v0).
We fix two curves C1 and C2 on S passing through P0 such that their parametrization
domains are consistent with components of domain of r. More precisely, given r, define
parametrization of C1 by r1(v) = r(u0, v) and that of C2 by r2(u) = r(u, v0). Then for C1

we have a tangent

rv(P0) =
∂x

∂v
(u0, v0)̂i +

∂y

∂v
(u0, v0)̂j +

∂z

∂v
(u0, v0)k̂

Similarly for C2 we have

ru(P0) =
∂x

∂u
(u0, v0)̂i +

∂y

∂u
(u0, v0)̂j +

∂z

∂u
(u0, v0)k̂

So our final goal is to find the parametrized equation of the plane with lines ru(P0)
and rv(P0) on it. Let SP0 denote the tangent plane of S at P0. Then we define the
parametrization α : R2 → SP0 by α(s, t) = P0 + sru(P0) + trv(P0).

If ru(p)× rv(p) 6= 0 for all p ∈ S then S is called Smooth surface.

Normal to a surface

Follow all the previous notations. Then normal to S at p ∈ S is defined by ru(p)× rv(p).

The normal vector field on S is defined as n : S → R3 by n(p) =
ru(p)× rv(p)
‖ ru(p)× rv(p) ‖

.

18.2 Orientation of surfaces
For a surface S we can have two choices of normal at each point p ∈ S. One is n(p)
and another one is −n(p). Both of them are vector field on S. An oriented/orientable
surface S is a surface with a fixed choice of normal vector field. S is called positively
oriented if the normal vector field is n, and negatively oriented if the normal vector field
is −n.

In case of curve the orientation was representing the direction of traversing. Here
the orientation of a surface says whether it is the outward surface or the inward surface.
(Figure 18)

Figure 18: Orientation of surface
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Once we define an orientable surface the question we can naturally ask is whether
all surfaces are orientable. We give a quick cheap answer to this as ”no”. But showing
the existence of such non-orientable surfaces is highly non-trivial. So we don’t directly
give the parametrized equation of the example. We illustrate how such surfaces can be
formed and then talk about its parametrization.

Mobius strip

Take a rectangular strip (As shown in figure 19). Twist it exactly once and paste its
opposite ends as shown in the figure. The object M formed is called Mobius strip.

Figure 19: Mobius strip

We have already seen that orientable surfaces has two directions, inward and out-
ward. For example, take a sphere. It has outer and inner orientations of the surface. But
in Mobius strip there are no such two directions associated. Take a pencil. Start draw-
ing a line on the Mobius strip. Keep moving on and one will end up reaching the initial
position where he started after covering the whole of it. So it has no such inward and
outward surface. But in case of sphere if we start drawing a line on the outer surface
we will never reach inner surface.

Observe that the parametrization of M is r : [0, 2π] × [−1, 1] → R3 by x(u, v) =

(1 +
v

2
cos

u

2
) cosu, y(u, v) = (1 +

v

2
cos

u

2
) sinu, z(u, v) =

v

2
sin

u

2
.

18.3 Surface area
Let S be a surface on R3. It has a parametrization r : Q → R3 i.e. r(u, v) = x(u, v)̂i +

y(u, v)̂j + z(u, v)k̂ for all (u, v) ∈ Q. Now ru and rv are two vector fields on R3. So for
all p ∈ S, ru(p) × rv(p) ∈ R3. But ‖ ru(p) × rv(p) ‖∈ R. So the function f defined from
S to R by p →‖ ru(p) × rv(p) ‖ is a real valued function. Then f ◦ r : Q → R is a real
valued function on Q. i.e. f ◦ r(u, v) =‖ ru(r(u, v))× rv(r(u, v)) ‖ We can talk about its
integrability over Q.

Now we are ready to define the surface area of S. So area of S = A(S) =
∫
Q
f ◦ r.

We just write it below using a more convenient notation.

A(S) =

∫ ∫
Q

‖ ru × rv ‖ dA

where ru =
∂x

∂u
î +

∂y

∂u
ĵ +

∂z

∂u
k̂ and rv =

∂x

∂v
î +

∂y

∂v
ĵ +

∂z

∂v
k̂.
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Graph of a function

Graph of a function is a surface where one variable can be expressed as a function of
other two. Generally, the equation of the surface is given as z = f(x, y) for f : D → R.
So we have a natural parametrization i.e. x(u, v) = u, y(u, v) = v, z(u, v) = f(u, v) for
all (u, v) ∈ D. We denote this surface as G(f).

Now we find the surface area of such a surface G(f). First we see r = ûi + vĵ +

f(u, v)k̂. Hence ru = î +
∂f

∂u
k̂ and rv = ĵ +

∂f

∂v
k̂. Now we calculate

ru × rv =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

1 0
∂f

∂u

0 1
∂f

∂v

∣∣∣∣∣∣∣∣∣ = −∂f
∂u

î− ∂f

∂v
ĵ + k̂

. Thus we have ‖ ru × rv ‖=
√

1 +
(∂f
∂u

)2
+
(∂f
∂v

)2. Hence the surface area is

A(G(f)) =

∫ ∫
D

√
1 +

(∂f
∂u

)2
+
(∂f
∂v

)2
dA

Exercise 122 Prove that the surface area of a sphere of radius a is 4πa2.

Exercise 123 Find the area of the part of the sphere x2 + y2 + z2 = 4z that lies inside the
paraboloid z = x2 + y2.

18.4 Surface integrals on R3

Now we are ready to define our main concept i.e surface integrals. S is a surface on
R3. Q is a rectangle in R2. Let r : Q → R3 be the parametrization of S such that
r(u, v) = (x(u, v), y(u, v), z(u, v)) for all (u, v) ∈ Q. f : S → R is a bounded function
with it’s set of point of discontinuity having measure zero. Then the surface integral
of f over S equals∫ ∫

S

f(x, y, z)dS =

∫ ∫
Q

f(r(u, v)) ‖ ru × rv ‖ dA

We can also think of this in terms of Riemann sum. Recall the special case of Rie-
mann sum discussed at the end of section 9. Let Q = [a, b]× [c, d]. ∆u = b−a

m
and hence

a, a + ∆u, a + 2∆u, · · · , a + m∆u is a partition of [a, b]. Similarly ∆v = d−c
n

and hence
c, c + ∆v, c + 2∆v, · · · , c + n∆v is a partition of [c, d]. Let ui = a + i∆u. Let ui be the
midpoint of the interval [a + (i − 1)∆u, a + i∆u]. Similarly Let vj = c + j∆v. Let vj be
the midpoint of the interval [c + (j − 1)∆v, c + j∆v]. So informally speaking, we are
trying to find a partition of S by applying r to the (ui, vj) s. But the concept of area of
partition will be a bit different here. Define ∆Sij =

∫ ui
ui−1

∫ vj
vj−1
‖ ru × rv ‖ dA. In this set

up the surface integral of f along S equals∫ ∫
S

f(x, y, z)dS = lim
m,n→∞

Σm
i=1Σn

j=1f(r(ui, vj))∆Sij
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For example if we take the surface z = φ(x, y) for φ : D → R and f is a bounded
continuous real valued function on it, then∫ ∫

G(φ)

f(x, y, z)dG(φ) =

∫ ∫
D

f(u, v, φ(u, v))

√
1 +

(∂φ
∂u

)2
+
(∂φ
∂v

)2
dA

It is not necessary that we have to use the notation dG(φ) when we integrate over
the surface G(φ). We can use a general notation dS for any surface integrals.

Exercise 124 Let S be the unit sphere x2 + y2 + z2 = 1. Compute the surface integral∫ ∫
S
x2dS.

Hint : Find a suitable parametrization of S by

x(u, v) = sinu cos v, y(u, v) = sinu sin v, z(u, v) = cos u; 0 ≤ u ≤ π, 0 ≤ v ≤ 2π

. So r(u, v) = sinu cos vî + sinu sin vĵ + cosuk̂. Now we compute ru × rv.

ru × rv =

∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂x

∂u

∂y

∂u

∂z

∂u
∂x

∂v

∂y

∂v

∂z

∂v

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
î ĵ k̂

cosu cos v cosu sin v − sinu
− sinu sin v sinu cos v 0

∣∣∣∣∣∣∣∣
= sin2 u cos vî + sin2 u sin vĵ + sinu cosuk̂. Hence ‖ ru × rv ‖=√

sin4 u cos2 v + sin4 u sin2 v + sin2 u cos2 u =
√

sin4 u+ sin2 u cos2 u =
√

sin2 u = sinu.
Now

∫ ∫
S
x2dS =

∫ 2π

0

∫ π
0
x2 ‖ ru × rv ‖ dudv =

∫ 2π

0

∫ π
0

(sinu cos v)2 sinu dudv =∫ 2π

0

∫ π
0

cos2 v sin3 u dudv. Now use Fubini’s theorem and compute to obtain
4π

3
.

Exercise 125 Evaluate
∫ ∫

S
y dS where S is the surface z = x+ y2 , 0 ≤ x ≤ 1 , 0 ≤ y ≤

2.

18.5 Surface integrals of vector fields
Let F be a vector field on a surface S on R3. Q is a rectangle in R2 and r : Q → R3 is
parametrization of S by r(u, v) = (x(u, v), y(u, v), z(u, v)) for all (u, v) ∈ Q. We define
ru, rv : Q→ R3 by

ru(u, v) =
∂x

∂u
(u, v)̂i +

∂y

∂u
(u, v)̂j +

∂z

∂u
(u, v)k̂

and
rv(u, v) =

∂x

∂v
(u, v)̂i +

∂y

∂v
(u, v)̂j +

∂z

∂v
(u, v)k̂

So now define n : S → R3 by

n(r(u, v)) = ru(u, v)× rv(u, v)

Finally define F · n : S → R by

(F · n)(r(u, v)) = F (r(u, v)) · n(r(u, v))
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Definition 126 (Flux) Let F be a continuous vector field on a surface S on R3. Then the
flux of F across S is∫ ∫

S

F · dS =

∫ ∫
S

F · n dS =

∫ ∫
Q

(F ◦ r) · (ru × rv) dA

The Surface integral of F over S is the flux of F across S.

Exercise 127 Find the flux of the vector field F (x, y, z) = zî + yĵ + xk̂ across the unit
sphere x2 + y2 + z2 = 1. (Hint : Same as exercise 124)

The motivation of surface integral came from a physical problem i.e. given a fluid
flow in space (which is a vector field on R3) finding its flux. Although this concept
of surface integrals arises in other physical situations as well. For instance, if E is the
electric field then the surface integral

∫ ∫
S
E · dS is called the electric flux of E through

the surface S. One of the important laws of electro-statistics is Gauss’s Law, which says
that the net charge enclosed by a closed surface S is

Q = ε

∫ ∫
S

E · dS

where ε is a constant (called the permittivity of free space) that depends on the units
used.

Another application of surface integrals occurs in the study of heat flow. Suppose
the temperature at a point (x, y, z) in a body is t(x, y, z). Then the heat flow is defined
as the vector field F = −K∇t where K is an experimentally determined constant called
the conductivity of the substance. The rate of heat flow across the surface S in the body
is then given by the surface integral∫ ∫

S

F · dS = −K
∫ ∫

S

∇t · dS

Exercise 128 Evaluate
∫ ∫

S
y2 dS where S is the part of the sphere x2 + y2 + z2 = 4 that

lies inside the cylinder x2 + y2 = 1 and above xy plane.

Figure 20: Exercise-128

Exercise 129 Find the mass of a thin funnel in the shape of a cone z =
√
x2 + y2, 1 ≤

z ≤ 4, if its density function is ρ(x, y, z) = 10− z.
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Exercise 130 Use Gauss’s Law to find the charge enclosed by the cube with vertices (±1,±1,±1)

if the electric field is given by E(x, y, z) = x̂i + yĵ + zk̂.

Exercise 131 The temperature at a point in a ball with conductivity K is inversely pro-
portional to the distance of the point from the center of the ball. Find the rate of heat flow
across a sphere of radius a with center at the center of the ball.

Exercise 132 Let F be an inverse square field on R3 i.e. F (r) =
cr

‖ r ‖3
for some constant

c, where r = x̂i + yĵ + zk̂. Show that the flux of F across a sphere S with centre at origin
is independent of the radius of S.

19 Stokes’ theorem
Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theorem.
Whereas Green’s Theorem relates a double integral over a plane region R to a line
integral around its plane boundary curve C , Stokes’ Theorem relates a surface integral
over a surface S to a line integral around the boundary curve C of (which is a curve on
R3). Figure 21 shows an oriented surface S with unit normal vector n. The orientation
of S induces the positive orientation of the boundary curve C shown in the figure. This
means that if one walks in the positive direction around with her head pointing in the
direction of n, then the surface S will always be on her left.

Figure 21: Strokes’ theorem

Theorem 133 (Stokes’ theorem) Let S be an oriented smooth surface that is bounded by
a simple, closed, boundary curve C with positive orientation. i.e. C = Bdy(S) = S\int(S).
Let F be a vector field whose components have continuous partial derivatives on an open
region in R3 that contains S. Then∫

C

F · dr =

∫ ∫
S

curl F · dS

Exercise 134 Evaluate
∫
C
F · dr where F (x, y, z) = −y2î + x̂j + z2k̂ and C is the curve of

intersection of the plane y+ z = 2 and the cylinder x2 + y2 = 1. Also C has a counter clock
wise orientation when viewed from above.

74



From section 15.7 we see
∫
C
F · dr =

∫
C
F · T dC and from definition 126 we

see
∫ ∫

S
curl F · dS =

∫ ∫
S
(curl F ) · n dS. So Stokes’ Theorem says that the line

integral of the tangential component of F around the boundary curve of S is equal
to the surface integral over of the normal component of the curl of F . The positively
oriented boundary curve C of the oriented surface S is often written as ∂S. In that case
Stokes’ Theorem can be expressed as∫ ∫

S

curl F · dS =

∫
∂S

F · dr · · · · · · ∗

There is an analogy among Stokes Theorem, Green’s Theorem, and the Fundamental
Theorem of Calculus. As before, there is an integral involving derivatives on the left side
of ∗ (recall from section 17.3 that curl F is a sort of derivative of F ) and the right side
involves the values of F only on the boundary of S.

In fact, in the special case where the surface is flat and lies in the -plane with upward
orientation, the unit normal is k̂, the surface integral becomes a double integral, and
Stokes’ Theorem becomes∫

C

F · dr =

∫ ∫
S

curl F · dS =

∫ ∫
S

(curl F ) · k̂ dA

which is precisely the vector form of Green’s theorem. So we can say that Green’s
theorem is a special case of Stokes’ theorem.

Exercise 135 Let C be a simple closed curve that lies in the plane x+y+z = 1. Show that
the line integral

∫
C
z dx − 2x dy + 3y dz depends only on the area of the region bounded

by C and not on the shape of C or its location in the plane.

Exercise 136 If S is a sphere and F satisfies the hypothesis of Stokes’ theorem, show that∫ ∫
S
curl F · dS = 0

20 The divergence theorem
Recall the definition of Simple region in Rn(definition 66). We rewrite the definition of
simple region in R3 for convenience. Let D ⊆ R2. f and g are two continuous functions
from D to R such that f(x, y) ≤ g(x, y) for all (x, y) ∈ D. So a solid simple region E
in R3 is defined by E = {(x, y, z) ∈ R3 | (x, y) ∈ D ∧ f(x, y) ≤ z ≤ g(x, y)}. So E is the
region between surfaces G(f) and G(g) on R3. Where G(f) is the graph of f .

In section 17.3 we have seen second vector form of Green’s theorem∮
C

F · n dC =

∫ ∫
R

div(F (x, y, z)) dA

where R is the region in R2 enclosed by curve C. Now we just extend the same idea
for vector field on R3 i.e. F is a function of x, y and z. So we can naturally guess an
extension i.e. ∫

S

F · n dS =

∫ ∫ ∫
E

div(F (x, y, z)) dV
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where E is a region enclosed by surface S on R3. Till now this is just an assumption
but under appropriate hypothesis it may have true implications. One can observe its
similarity to Green’s Theorem and Stokes’ Theorem. In those cases it relates the integral
of a sort of derivative of a function over a region to the integral of the original
function over the boundary of the region. Here also we have the same analogy.

Figure 22: The divergence theorem

Theorem 137 (The divergence theorem) Let E be a solid simple region in R3 such that
its boundary is a is a surface S on R3 with a positive outward orientation. Let F be a vector
field whose components have continuous partial derivatives on an open region in R3 that
contains E. Then ∫ ∫

S

F · dS =

∫ ∫ ∫
E

div F dV

Exercise 138 Find the flux of the vector field F (x, y, z) = zî+yĵ+xk̂ over the unit sphere
x2 + y2 + z2 = 1.

Exercise 139 Evaluate
∫ ∫

S
F · dS where F (x, y, z) = xyî + (y2 + exz

2
)̂j + sin(xy)k̂ and S

is the surface of the region E bounded by the parabolic cylinder z = 1− x2 and the planes
z = 0, y = 0 and y + z = 2.

Exercise 140 Consider the electric field E on R3 defined by E(v) =
εQ

‖ v ‖3
v where the

electric charge Q is located at the origin and the position vector of another unit charge is
v = (x, y, z). Show that the electric flux of E through any closed surface S2 that encloses
the origin is ∫ ∫

S2

E · dS2 = 4πεQ

Figure 23: Exercisde - 140
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Hint : We will definitely use theorem 137 but we have to find suitable E and S in
a tricky way. See figure 23. Here S1 is any smallest sphere completely inside S2. We
take the inner region of S1 and S2 as E. Then the appropriate orientation for it to be
consistent with the statement of the divergence theorem should be n2 for S2 and −n1

for S1. Now we use the theorem.

Exercise 141 A solid occupies a region E with surface S and is immersed in a liquid with
constant density ρ. We set up a coordinate system so that the xy plane coincides with the
surface of the liquid, and positive values of z are measured downward into the liquid. Then
the pressure at depth z is , p = ρgz where g is the acceleration due to gravity. The total
buoyant force on the solid due to the pressure distribution is given by the surface integral

F = −
∫ ∫

S

−(pn) dS

where n is the outer unit normal. Show that F = −W k̂, whereW is the weight of the liquid
displaced by the solid. (Note that F is directed upward because z is directed downward.)
The result Archimedes’ Principle: The buoyant force on an object equals the weight of the
displaced liquid.

77



Part IV

Problems
Readers are encouraged to solve the following problems to get a deeper insight into the
subject.

Problem 1 (The wave equation)
1. Let c be a constant, tacitly understood to denote the speed of light. Show that

if u = F (x − ct) + G(x + ct) (where F and G are arbitrary C2 functions of one

variable) then c2∂
2u

∂x2
=
∂2u

∂t2

2. Now let 0 < v < c (both v and c are constant), and define new space and time
variables in terms of old ones by a Lorentz transformation,

y = γ(x− vt), u = γ(t− (
v

c2
)x) where γ = (1− v2

c2
)−

1
2 .

Show that
y2 − (cu)2 = x2 − (ct)2.

Suppose that a quantity w, viewed as a function of x and t satisfies the wave

equation, c2∂
2w

∂x2
=
∂2w

∂t2
. What corresponding equation does w satisfy viewed as a

function of y and u?

Problem 2 (The monkey saddle)
The graph of the function

m(x, y) = 6xy2 − 2x3 − 3y4

is called a monkey saddle. Find the three critical points of m and classify each as a
maximum, minimum or saddle. (The max/min test will work on two. Study m(x, 0) and
m(0, y) to classify the third.) Explain the name monkey saddle. (Computer graphing
software may help).

Problem 3
Define f : R→ R by

f(x) =

{
x+ 2x2sin( 1

x
) + 7ex if x 6= 0

0 if x = 0

1. Show that f is differentiable at x = 0 and that f ′(0) 6= 0. (Since this is a one-
dimensional problem you may verify the old definition of derivative rather than
the new one.)

2. Despite the result from the previous part of the problem, show that f is not locally
invertible at x = 0. Why doesn’t this contradict the Inverse Function Theorem?
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Problem 4 (Diagonal matrix of differentiable operator)
A is open in Rn. For what differentiable mappings f : A → Rm is Df(a) a diagonal
matrix for all a ∈ A? (A diagonal matrix is a matrix whose (i, j)th entries for all i 6= j
are 0)

Problem 5
f, g : Rn → Rm are differentiable everywhere. Prove the following

1. If U is open in Rm, f−1(U) is open in Rn.

2. If F is closed in Rm, f−1(F ) is closed in Rn.

3. If K is compact subset of Rn, f(K) is compact in Rm.

4. A ⊆ Rn such that f(a) = g(a) for all a ∈ A. Show that f(a) = g(a) for all a ∈ Ā
(Closure of A)

5. If T is connected subset of Rn, f(T ) is connected in Rm.

Problem 6
Suppose f is an integrable real valued function on Rn. For each α > 0 define Eα = {x |
|f(x)| > α}. Show that ∫

Rn
| f(x) | dx =

∫ ∞
0

m∗(Eα) dα

Problem 7 (Measurable sets)
A subset E of Rn is measurable if for all ε > 0 there exists an open set Oε with E ⊂ Oε

such that m∗(Oε \ E) < ε. Show that

1. Every open set in Rn is measurable.

2. Every closed set in Rn is measurable.

3. Countable union of measurable sets is measurable.

4. If A ⊆ Rn is measurable then Rn \ A is measurable.

5. Countable intersection of measurable sets is measurable.

6. Cantor’s set is measurable.

7. There exists a set A ⊆ Rn such that A is not measurable.
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Problem 8
Let S = [0, 1]× [0, 1] ⊂ R2. Evaluate

I0 =

∫
S

x2 − y2

(x2 + y2)2

Also calculate

I1 =

∫ 1

0

( ∫ 1

0

x2 − y2

(x2 + y2)2
dx
)
dy and I2 =

∫ 1

0

( ∫ 1

0

x2 − y2

(x2 + y2)2
dy
)
dx

Deduce that I1 6= I2. Explain why Fubini’s theorem is not being satisfied here.

Problem 9
Let F,G be vector fields on R3 and f be a scalar field on R3. Then fF, F · G,F × G is
defined by

fF (x, y, z) = f(x, y, z)F (x, y, z)

(F ·G)(x, y, z) = F (x, y, z) ·G(x, y, z)

(F ×G)(x, y, z) = F (x, y, z)×G(x, y, z)

Now prove the following identities

1. div(fF ) = f div F + F · ∇f

2. curl(fG) = f curl G+ (∇f)×G

3. div(F ×G) = G · curl F − F · curl G

4. curl(curl G) = ∇(div G)−∇2G

5. ∇(F ·G) = (F · ∇)G+ (G · ∇)F + F × curl G+G× curl F

Problem 10 (n−surface)
U is open subset of Rn+1. f : U → R is smooth. Then f−1(c) is called the level set of f
at height c.

S ⊆ Rn+1 is called a n− surface if

• S is a level set of some smooth function f from some open subset of Rn+1 to R
and

• (∇f)(p) 6= 0 for all p ∈ S.

1−surfaces are called curves. 2−surfaces are called surfaces.

See the examples of some level set below (Figure 24) and answer the following.
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Figure 24: Level sets for the functions f(x1, x2, · · · , xn+1 = x2
1 + x2

2 + · · ·+ x2
n+1

1. Give an example of a parametrized curve on R2 (i.e. image of some parametriza-
tion) which is not a curve (i.e. 1−surface)

2. Give an example of a curve (i.e. 1−surface)which is not a parametrized curve on
R2(i.e. image of some parametrization)

3. Give an example of a parametrized surface on R3 (i.e. image of some parametriza-
tion) which is not a surface (i.e. 2−surface)

4. Give an example of a surface (i.e. 2−surface)which is not a parametrized surface
on R3(i.e. image of some parametrization)
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