
Ministry Of Higher Education And Scientific Research

Dr. Hadjira BELAIDI

Senior Lecturer (MCB),

Departement of Electronic

Institute of Electrical and Electronics Engineering (IGEE)

University M’hamed Bougara of Boumerdes (UMBB)

35000 IGEE/ UMBB, Boumerdes, Algeria

Tel: +21391724584

E-mail: hadjira983@yahoo.fr

December, 2018.

EMBEDDED

SYSTEM

MANUAL

Democratic And Popular Republic Of Algeria

Ministry Of Higher Education And Scientific Research

University M’hamed Bouguerra Of Boumerdes

Institute of Electrical and Electronic Engineering

Institute of Electrical and Electronics Engineering (IGEE)

University M’hamed Bougara of Boumerdes (UMBB)

35000 IGEE/ UMBB, Boumerdes, Algeria

mail: hadjira983@yahoo.fr

EE529L

EMBEDDED

SYSTEMS LAB

MANUAL

EMBEDDED

S LAB

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 2

CONTENTS

About this lab manual .. 3

Introduction ... 3

Overview ... 4

Lab 1: Creating and Building an S12(X) Project .. 7

Lab 2: Flowchart and pseudocode implementation (To solve arithmetic problems) 12

Lab 3: Using the HCS12 Parallel Ports (Ports A and B) .. 14

Lab 4: 7-segment displays drive .. 17

Lab 5: Interrupt (IRQ, XIRQ & Port H interrupts) ... 19

Lab 6: I/O Timer Functions ... 22

Lab 7: Serial Communication Interface .. 26

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 3

About this LAB manual

This Laboratory manual is intended for second year Master's students and

computer engineers who are interested in practical embedded systems programming

and problem solving. It offers insight into HCS12 microcontroller based systems

implementation and programming.

Introduction

Often embedded systems are designed to be small, low weight, low power, low

energy, low cost, realtime, distributed, reliable, durable, safe, and secure. In general

this means the simplest systems are usually preferred and whatever hardware and

software that is unnecessary is taken away from the system and its development

process. Therefore, embedded engineers frequently face limited resources and deal

with low-level programming as well as bit-operations on small processors and

microcontrollers. Many embedded systems are bare-machine, meaning there is no

operating system. Such systems are often programmed in assembly and C. The

concepts that do not need to be practiced on a bare-machine, are performed on the

host-machine.

This lab manual drives the student through the steps to create assembly programs

using CodeWarrior software and emulate them; then, implement them in an HCS12

based educational board. In the following we start by giving an overview about the

T-board used in this lab manual.

An introduction of the codeWarrior integrated development environment is given

in LAB1 which will familiarize you with the general compile and download process.

LAB 2 focuses on the use of both the flowchart and the algorithm procedure to

describe the solution to a problem the parts of this lab are given in form of exercises.

LAB 3 focuses on HCS12 parallel ports. At first, it explains how the LEDs

connected to port B on the T-board can be used to post some data. Then, it describes

how LEDs and switches can be connected to port A and how to write the

appropriate software to define them as outputs and inputs. Lab 4 is a comprehensive

exercise for HCS12 parallel port and how 7-segment displays can be connected and

details also the delay subroutine creation. Lab 5 explains maskable and non-

maskable interrupt based I/O operations. Lab 6 deals with the timer Input Capture

and Timer Output Compare functions. Lab 7 clarifies the SCI Serial

Communications module, and shows the basic steps needed to set up the HCS12 for

asynchronous serial communications.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 4

Overview

The HCS12 T-Board is a universal evaluation and training board for Motorola's
advanced HCS12 16-bit microcontroller family. It provides a low-cost development
platform and helps reducing development time and cost. It is a versatile tool for
rapid prototyping and educational purposes.

The HCS12 T-Board is equipped with a MC9S12DP512 microcontroller unit
(MCU). It contains a 16-bit HCS12 CPU, 512KB of Flash memory, 14KB RAM,
4KB EEPROM. The memory map of the microcontroller is initialized by the
TwinPEEKs monitor as follows:

Begin End Resource
$0000 $03FF Control Registers

$0400 $07FF 1KB(of total 4KB) EEPROM

$0800 $3FFF 14KB RAM

$4000 $7FFF 16KB Flash

$8000 $BFFF 16KB Flash page $20

$C000 $FFFF 16KB Flash

Note:
Due to a mask set erratum of the MC9S12DP512 Mask Set 4L00M (and earlier) not
only the monitor code in page $3F is write protected, but also an additional area
starting at $B000 up to $BFFF in page $3B. Consequently, the monitor cannot
download user code to this region. However, the whole Flash memory (including
the write protected areas) can be programmed using a BDM tool at any desired time.

The HCS12 T-Board is equipped also with a large amount of peripheral function
blocks, such as SCI, SPI, CAN, IIC, Timer, PWM, ADC and General-Purpuse-I/Os.
The MC9S12DP512 has full 16-bit data paths throughout. An integrated PLL-circuit
allows adjusting performance vs. current consumption according to the needs of the
user application.

In addition to the on-chip controller functions, the HCS12 T-Board module provides
a number of useful peripheral components, such as RS232 and CAN transceivers,
indicator elements (optical/acoustical), input devices (DIP switch, potentiometer)
and a voltage regulator.

Technical Data

 MCU MC9S12DP512 with LQFP112 package (SMD)
 HCS12 16-bit CPU, uses same programming model and command set as the

HC12
 16 MHz crystal clock, up to 25 MHz bus clock using PLL

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 5

 Memory: 512KB Flash, 4KB EEPROM, 14KB RAM
 2x SCI - asynch. serial interface (e.g. RS232, LIN)
 3x SPI - synch. serial interface
 1x IIC - Inter-IC-Bus
 5x msCAN-Module (CAN 2.0A/B-compatible), one channel equipped with

on-board high-speed physical interface driver
 8x 16-Bit Timer (Input Capture/Output Compare)
 8x PWM (Pulse Width Modulator)
 16-channel 10-bit A/D-Converter
 BDM - Background Debug Mode Interface, std 6-pin connector
 Special LVI-circuit (reset controller)
 Serial interface with RS232 transceiver (for PC connection)
 Second serial port for IF-Modules (RS232, RS485, LIN...)
 8x Indicator-LED, one Bi-color LED (adjustable via PWM)
 Sound transducer (buzzer)
 Reset Button
 8x DIP switch, two push button switches
 analog input potentiometer
 up to 85 free general-purpose I/Os
 all MCU signals brought out on four header connectors around the MCU,

arrangement compatible with Motorola EVB
 On-board voltage regulator generates 5V operating voltage, current

consumption 50 mA typ. (plus LEDs etc.)
 Mech. Dimensions: 80mm x 95mm

Note

For more information you can refer to the “HCS12 T-Board, Hardware Version

1.00” User manual published in June 9th, 2008. The figure below is a picture of the

HCS12educational T-Board.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 6

HCS12educational T-Board

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 7

Lab 1: Creating and Building an S12(X) Project

Introduction

This lab deals with the correct way to use CodeWarrior. CodeWarrior is an IDE

(Integrated Development Environment) designed to support the software

development for all microcontroller products manufactured by Freescale.

CodeWarrior allows the user to debug his/her software using the following three

approaches:

1. Running the program using the simulator;

2. Running the program on the target hardware programmed with serial monitor

(the HCS12 MCU is programmed with the serial monitor e.g. “Occonsole” or

any other one);

3. Running the program on the target hardware connected to a BDM-based

debug adapter (the HCS12 provides a background debug module “BDM” that

allows the user to perform software debug activities (set break-point, trace

program, execute program to a breakpoint or a certain location, etc) via the

serial interface.

CodeWarrior has a built-in simulator that can be used by the user to debug

her/his soft-ware. CodeWarrior can support software debugging via the serial

monitor. Using this approach, the user needs to connect the demo board to the

COM port of the PC using a serial cable. CodeWarrior can work with the following

BDM-based adaptors to debug users’ software:

1. P&E Multilink/CyclonePro BDM adaptor

2. TBDML adaptor

3. Abatron BDI adaptor

4. Softee’s inDART debugger…

1. Purpose

This lab will guide you through the general use of the CodeWarrior™ integrated

development environment and will familiarize you with the general compile and

download process.

2. Building a software project using CodeWarrior

CodeWarrior can be started by clicking on its icon.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 8

2.1. Project Setup

Step 1: Create a new project by pressing the File menu and select New…. A popup

dialog box will appear to allow you to select the HCS12 device.

Step 2: Select the HCS12 device (MC9S12DP512) and the click on Next.

Step 3: Select the set of languages to be supported initially. Choose absolute

assembly for this Lab. Enter the project name and the project directory and then

click on Next.

Step 4: Don’t select any file to be added to the new project, click on Next directly.

Step 5: Select None for the Rapid Application Development Options. No device

initialization code is generated. Only generates startup code.

Step 6: Click on Finish to complete the project setup. The resultant Screen is shown

in Figure 1.

Figure 1: CodeWarrior screen after project setup.

2.2. Source Code Entering

 During the project creation process, CodeWarrior also creates the required files

for the project and put them under different directory names (Sources, includes,

Project Settings …).

 The user can display the file names under these directories by clicking on the ‘+’

character to their left.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 9

2.2.1. Two Methods for Entering a Program

1. Modify the main.asm program

2. Enter the program with a different name and add it to the project

2.2.2. Example program

Open the main.asm program (by double clicking on its name) and replace it with the

following program.

1 XDEF Start ; export symbols

2 ABSENTRY Start ; required for absolute assembly

3 ; ORG $0900 ; section for data in RAM

4 ;Sum: DS.B 1 ; put the sum value here

5 ORG $0800 ; section for code, constants

6 Start: LDS #$0900 ; initialize the stack pointer

7 LDAA #$1A ; get a value

8 ADDA #$45 ; add to another

9 ;STAA Sum ; store the sum

10 END

2.2.3. Adding a File into a Project

 Press the right mouse button on Sources and select the file name from the

directory that contains the file.

2.3. Project Build

 A project can be built by pressing Project menu and selecting Make or pressing

the F7 function key on the keyboard.

 Nothing will be displayed when the project has no error.

 A project with errors will be displayed as shown in Figure 2.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 10

Figure 2: CodeWarrior display error messages when there are errors in the program.

 Press the function key F5 or select Debug from the Project menu.

o What are the different viewer windows shown in the debugger? Explain

their roles.

 Click on the Step over button once.

o What do you remark?

 Click on the Step over button one more time.

o What do you remark?

 Press the Start/Continue to execute the rest of the program.

o What does this program do?

 Remove the semi-colon from the begging of the lines 3, 4 and 9 of the main

program.

o Where is the result stored?

o Change the program to store the result in memory location 1000hex

then in 1100hex.

o Can you store the result in memory location 800hex? Explain?

3. Setting-up the T-board

 Connect the T-Board via RS232 to the lab PC using the flat ribbon cable.
 On the PC, start the OC-Console terminal program (can be found in the

directory C:/HCS12).
 Connect a power supply to X1 power connection.
 Once powered up, the TwinPEEKs Monitor program will start, displaying a

welcome message and waiting your commands.
 The OC-Console terminal program should show you a prompt that displays

the current program page as follow: 20>

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 11

 Type the command H and press Enter.
 Type the command I and press Enter.

o Explain the meaning of the information that you get.

4. Loading the *.s19 record on the T-board

 The CodeWarrior produces an output file with a *.s19 (i.e. machine code)

extension which can be loaded into and run on the HCS12. The monitor loads
and records the *.S19 into the HCS12 memory.

 Once you have successfully tested the functionality of your code using the
debugger, you can now load the Project *.abs.s19 file which contains the
machine code into the HCS12 memory. (The Project.abs.s19 file is generated
in the /bin directory) of your project.

o Open the *.abs.s19 file using notepad text editor. You can observe the
machine code of your assembly application in addition to its starting
address. Compare the content of your *.s19 file with the machine code
you see in the Debugger Memory viewer window.

 In the OC-Console terminal prompt type the command L and press Enter.
You should get the following: 20>L

loading ...
 In the top menu of the OC-Console click the Download icon; a file window

appears so you can select the Project.abs.s19 from the /bin directory. Then
click on Download. The *.s19 machine code should now be loaded into the
HCS12 memory.

 Now you can start executing your machine code just loaded by typing the
following command:

20>G 0800
o What is the starting address of your program in memory?
o How can you verify that your program is working correctly?
o What do you expect to see on the memory where the result is stored?

Verify it?
o Modify the previous program to sum the two numbers 25 and 90. Store

your program in memory location 850hex and the result must be stored
in memory location 970hex.

Note: If you get an error about writing to some Flash address, just type the
command X then press Enter, then press Y. This command will erase the flash
before you load your program into it. This is because you cannot write to a Flash
memory block unless it is erased (i.e. it has no data from before). Once the Flash is
erased, you can load your program again and execute it as explained above.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 12

Lab 2: Flowchart and pseudocode implementation

(To solve arithmetic problems)

Introduction

Embedded system designers must spend a significant amount of time on software
development; hence, a serious look at some software development issues is needed.
Software development starts with problem definition. The problem presented by the
application must be fully understood before any program can be written. Once the
problem is known, the programmer can begin to lay out an overall plan of how to
solve the problem. The plan is also called an algorithm. Informally, an algorithm is
any well defined computational procedure that takes some value, or set of values, as
input, and produces some value, or set of values, as output. An algorithm is thus a
sequence of computational steps that transforms the input into the output. We can
also view an algorithm as a tool for solving a well-specified computational problem.
The statement of the problem specifies in general terms the desired input/output
relationship. The algorithm describes a specific computational procedure for
achieving that input/output relationship.

An algorithm is expressed in pseudocode that is very much like C or PASCAL.
What separates pseudocode from “real” code is that in pseudocode, we employ
whatever expressive method that is most clear and concise to specify a given
algorithm. An algorithm provides not only the overall plan for solving the problem
but also documentation to the software to be developed.
An earlier alternative for providing the overall plan for solving software problems
was the use of flowcharts. A flowchart shows the way a program operates. It
illustrates the logic flow of the program. Therefore, flowcharts can be a valuable aid
in visualizing programs.

1. Purpose

The purpose of this lab is the use of both the flowchart and the algorithm
procedure to describe the solution to a problem (during this lab, we deal with
arithmetic operations). The lab is presented in form of exercises which must be
prepared before the lab session.

After being satisfied with the algorithm or the flowchart, it must be converted into
a source code in the assembly language. Each statement in the algorithm (or each
block of the flowchart) will be converted into one or multiple assembly instructions.

Exercise N°1

1) Explain what does the program described in the following flowchart do?

2) Translate this flowchart into an assembly program.

3) Run the program in the simulator then on the T-board.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 13

Exercise N°2
Write HCS12 assembly language code to implement the following pseudo code
module.

Assume that N, NCOUNT, and PCOUNT are 8-bit variables that should be defined
in memory.

IF (N < 0) THEN
Increment NCOUNT
ELSE
Increment PCOUNT
ENDIF

Exercise N°3

Write a flowchart, a pseudo-code then an assembly program to add two 16-bit
numbers that are stored at $800~$801 and $802~$803, and store the sum at
$900~$901.
Extend the previous program to add two 4-byte numbers that are stored at
$800~$803 and $804~$807, and store the sum at $810~$813.

Exercise N°4

Develop a flowchart then write an instruction sequence to divide the signed 16-bit
number stored at memory locations $805~$806 by the 16-bit unsigned number
stored at memory locations $820~$821, and store the quotient and remainder at
$900~$901 and $902~$903, respectively.

Start

A ← [$801]

A ← A+[$802]

A ← A-[$805]

 [$900] ← A

Stop

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 14

Lab 3: Using the HCS12 Parallel Ports

(Ports A and B)

Introduction

Ports A and B are the easiest HCS12 parallel ports to understand and use. In

expanded mode, both Port A and Port B are used as time-multiplexed address or

data pins. When configured in single-chip mode, these two ports are used as

general-purpose I/O ports. Each Port A or Port B pin can be configured as an input

or output pin. When the HC12 is configured in expanded mode, Port A carries the

time-multiplexed upper address and data signals (A15/D15 ̴ A8/D8), whereas Port

B carries the time-multiplexed lower address and data signals (A7/D7 ̴ A0/D0).

1. Purpose

In this lab, you will write an assembly-language program to display various
patterns on the LEDs of your T-board. You will use the HCS12’s Port B as an
output port to display the LED patterns.

For this lab, you will create programs to write to Port B. In the first part, you will
test your programs by 8 LEDs connected to Port B. In the second part, you will vary
the four pins of Port A output by changing the switch settings connected to the other
four pins of the same port.

2. Part 1
2.1. Pre-LAb

1) Write a program to set up Port B as an 8-bit output port.
2) Write a program to count the number of zeros contained in memory locations

$900~$901 and save the result at memory location $905. Then, post the result
on the LEDs.

3) Write a program to shift the 32-bit number stored at $910~$913 to the right
four places. And Post the result of the least significant byte on the LEDs if it
is odd; otherwise post FF on the LEDs.

Write the program before coming to lab. Be sure to write the program using
structured, easy-to read code.

Note:
The address of Port B Data Register (PORTB) is $0001
The address of Port B Data Direction Register (DDRB) is $0003

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 15

2.2. The Lab
I)

1) Run your program on the simulator.
2) After your program works on the simulator, load it into your HCS12.

II) The HCS12DP512 has EEPROM (Electrically Erasable Programmable Read
Only Memory) between 0x0400 and 0x0FFF. If you put your program into
EEPROM the program will remain there when you turn off power. To put your
program into EEPROM, all you need to do is change the starting address of your
program to 0x0400. Note that you will want to store the array which has the turn
signal patterns in EEPROM (so the array will not disappear when you turn off
power). To do this, include any tables of constant patterns in the CODE section of
your program. You will want variables which will change as the program is
executed to be placed in RAM, say at location 0x0900, as usual.

When CPU starts running, it checks the state of pins AD0 and AD1. If these are
both low, it runs normally. If, however, AD0 is high and AD1 is low, the CPU will
immediately jump to your program in EEPROM. Thus, you can run a program
without having to have the HCS12 connected to a serial port to receive a command.
In order for the HCS12 to run properly, however, your program must do some
hardware setup which is normally done by TwinPEEKs. To set up the hardware
properly, your program needs to execute the following instructions. The reasons for
doing this will be discussed later in the course.

ldaa #$55 ; Reset COP Timer Arm/Reset Register
staa $003f ; COP Timer Arm/Reset Register
coma
staa $003f
clr $003c ; Turn off COP Control Register
ldab #$11 ; Map RAM into proper location
nop
stab $0010 ; Initialization of Internal RAM Position Register

ldab #$00 ; Set clock reference divider to 0
stab $0035
ldab #$05 ; Set PLL to multiply oscillator clock by 6
stab $0034
nop ; wait
nop
nop
nop

l1: brclr $0037,#$08,l1 ; Wait for PLL to lock

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ

bset $0039,#$80 ; Switch to PLL clock

Add the above instructions as the very first instructions in your program. Change the
address of your CODE section to 0x0400. Load the prog
past. Use the ASM command of Oc
into address 0x0400.
Be sure that a resistor is connected from GND to AD1 and a resistor from +5 V to
AD0. Verify that your program runs correctly w
power on your HCS12.

3. Part2
3.1. Pre-lab
Write an assembly program which allows you to read the input from
(pins) of port A and post (output)

3.2. The Lab
Use four pins from Port A as inputs, and the remaining four pins as outputs. Connect
the inputs to switches (connect them as it is illustrated in the figure 1 bellow), and
the outputs to LEDs (as shown in figure 2).

Run the program (written in the pre
switches and post their value to the output.

Figure 1. Switch Connection

mbedded systems lab manual

ha.belaidi@univ-boumerdes.dz

; Switch to PLL clock

Add the above instructions as the very first instructions in your program. Change the
address of your CODE section to 0x0400. Load the program as you have done in the
past. Use the ASM command of Oc-console to verify that the code has been loaded

Be sure that a resistor is connected from GND to AD1 and a resistor from +5 V to
AD0. Verify that your program runs correctly without reloading after cycling the

program which allows you to read the input from
(output) their value to the lower 4-bits (pins) of port A

r pins from Port A as inputs, and the remaining four pins as outputs. Connect
the inputs to switches (connect them as it is illustrated in the figure 1 bellow), and
the outputs to LEDs (as shown in figure 2).

(written in the pre-lab) which allows you to read the input from the
switches and post their value to the output.

Figure 1. Switch Connection. Figure 2. LED connection

(R1=1kΩ)

 Page 16

Add the above instructions as the very first instructions in your program. Change the
ram as you have done in the

console to verify that the code has been loaded

Be sure that a resistor is connected from GND to AD1 and a resistor from +5 V to
ithout reloading after cycling the

program which allows you to read the input from the upper 4-bits
(pins) of port A.

r pins from Port A as inputs, and the remaining four pins as outputs. Connect
the inputs to switches (connect them as it is illustrated in the figure 1 bellow), and

allows you to read the input from the

Figure 2. LED connection

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ

Lab 4: 7

Introduction

Freescale's HCS12 Controller Family
product line HC12. Compared to the HC12, the new types are faster and more
flexible, while the programming model and the instruction set remain the same.

The MCU MC9S12DP512

1. Purpose

This lab is a comprehensive exercise for HCS12 parallel port (7

and delay subroutine creation.

2. Pre-Lab
1. Program an assembly code to display a sequence of BCD values on the seven

segment display. Each digit must be posted for 1s.
2. Program an assembly code to display two digits (Let’s say 53) on two seven

segment displays.

3. The LAB
1. Connect your hardware as it is shown in Figure 1 bellow.
2. Connect the two output enable pins (/1OE and /2OE) to the ground.
3. Load your program to post a sequence of di

segments.

4. Modify your hardware

mbedded systems lab manual

ha.belaidi@univ-boumerdes.dz

Lab 4: 7-segment displays drive

HCS12 Controller Family is an upgrade from the existing 16
HC12. Compared to the HC12, the new types are faster and more

while the programming model and the instruction set remain the same.

MC9S12DP512 has 25MHz bus clock rate.

b is a comprehensive exercise for HCS12 parallel port (7

and delay subroutine creation.

Program an assembly code to display a sequence of BCD values on the seven
segment display. Each digit must be posted for 1s.

mbly code to display two digits (Let’s say 53) on two seven

Connect your hardware as it is shown in Figure 1 bellow.
Connect the two output enable pins (/1OE and /2OE) to the ground.
Load your program to post a sequence of digits (from 0 to 9) on the 7

Modify your hardware to design the circuit shown in figure 2.

 Page 17

is an upgrade from the existing 16-bit
HC12. Compared to the HC12, the new types are faster and more

while the programming model and the instruction set remain the same.

b is a comprehensive exercise for HCS12 parallel port (7-segment displays)

Program an assembly code to display a sequence of BCD values on the seven-

mbly code to display two digits (Let’s say 53) on two seven-

Connect the two output enable pins (/1OE and /2OE) to the ground.

gits (from 0 to 9) on the 7-

to design the circuit shown in figure 2.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 18

Figure 2. Connecting two 7-segments display to display two digits.

5. Modify your software so that you will be able to display two digits on two 7-
sigment displays (for example display 43)

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 19

Lab 5: Interrupt (IRQ, XIRQ & Port H interrupts)

Introduction

The interrupt vectors of the HCS12 are located at the end of the 64KB memory
address range, which falls within the protected monitor code space. Therefore, the
application program cannot modify the interrupt vectors directly. To provide an
alternative way, the monitor redirects all vectors (except the reset vector) to RAM.

The application program can set the required interrupt vectors during runtime
(before global interrupt enable!) by placing a jump instruction into the RAM pseudo
vector. The following example shows the steps to utilize the IRQ interrupt:

ldaa #$06 ; JMP opcode to
staa $3FEE ; IRQ pseudo vector
ldd #isrFunc ; ISR address to
std $3FEF ; IRQ pseudo vector + 1

The original vector addresses as well as the redirected addresses in RAM are

given at the end of the LAB.

1. Purpose

The purpose of this lab is to understand the concept of interrupts in embedded

systems. So, by doing this lab assignment, you will learn:

1. To use IRQ maskable interrupt
2. To use XIRQ non-maskable interrupt
3. Port H interrupt.

2. Pre-Lab

Part I: IRQ interrupt

1. Assume that the IRQ pin of HCS12 is connected to a push button and PortB
is connected to eight LED’s.

2. Write a program to configure PortB for output and enable the IRQ interrupt to
respond to a falling edge.

3. Write the service routine for the IRQ interrupt. Initially $FF should be posted
on PortB. Service routine for the IRQ interrupt should simply output $A1 to
PortB.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 20

Part II: XIRQ interrupt

Repeat the same steps done in part I; however, by using the XIRQ pin connected to

a 1-Hz digital waveform.

Part III: PORT H interrupt

1. Port H (PTH) is connected to 8 dual-switches. Write a program to count from

$00 to FF and post the count on PORTB.

2. Each number should be posted for 100ms, and so on.

3. Once the switch connected to PTH0 is toggled (rising edge), the count should

stop where it is and post its value on PORTB.

3. The LAB

1. Connect IRQ pin to a push button, then load the program of part I.
2. Connect XIRQ pin to a push button, then load the program of part II.
3. Load the program of part III and test it.

4. Redirected vector addresses

The following assembly listing is part of the monitor program. It shows the

original vector addresses (1st column from the left) as well as the redirected

addresses in RAM (2nd column):

FF80 : 3F43 dc.w TP_RAMTOP-189 ; reserved

FF82 : 3F46 dc.w TP_RAMTOP-186 ; reserved

FF84 : 3F49 dc.w TP_RAMTOP-183 ; reserved

FF86 : 3F4C dc.w TP_RAMTOP-180 ; reserved

FF88 : 3F4F dc.w TP_RAMTOP-177 ; reserved

FF8A : 3F52 dc.w TP_RAMTOP-174 ; reserved

 FF8C : 3F55 dc.w TP_RAMTOP-171 ; PWM Emergency

 ; Shutdown

FF8E : 3F58 dc.w TP_RAMTOP-168 ; Port P

FF90 : 3F5B dc.w TP_RAMTOP-165 ; CAN4 transmit

FF92 : 3F5E dc.w TP_RAMTOP-162 ; CAN4 receive

FF94 : 3F61 dc.w TP_RAMTOP-159 ; CAN4 errors

FF96 : 3F64 dc.w TP_RAMTOP-156 ; CAN4 wake-up

FF98 : 3F67 dc.w TP_RAMTOP-153 ; CAN3 transmit

FF9A : 3F6A dc.w TP_RAMTOP-150 ; CAN3 receive

FF9C : 3F6D dc.w TP_RAMTOP-147 ; CAN3 errors

FF9E : 3F70 dc.w TP_RAMTOP-144 ; CAN3 wake-up

FFA0 : 3F73 dc.w TP_RAMTOP-141 ; CAN2 transmit

FFA2 : 3F76 dc.w TP_RAMTOP-138 ; CAN2 receive

FFA4 : 3F79 dc.w TP_RAMTOP-135 ; CAN2 errors

FFA6 : 3F7C dc.w TP_RAMTOP-132 ; CAN2 wake-up

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 21

FFA8 : 3F7F dc.w TP_RAMTOP-129 ; CAN1 transmit

FFAA : 3F82 dc.w TP_RAMTOP-126 ; CAN1 receive

FFAC : 3F85 dc.w TP_RAMTOP-123 ; CAN1 errors

FFAE : 3F88 dc.w TP_RAMTOP-120 ; CAN1 wake-up

FFB0 : 3F8B dc.w TP_RAMTOP-117 ; CAN0 transmit

FFB2 : 3F8E dc.w TP_RAMTOP-114 ; CAN0 receive

FFB4 : 3F91 dc.w TP_RAMTOP-111 ; CAN0 errors

FFB6 : 3F94 dc.w TP_RAMTOP-108 ; CAN0 wake-up

FFB8 : 3F97 dc.w TP_RAMTOP-105 ; FLASH

FFBA : 3F9A dc.w TP_RAMTOP-102 ; EEPROM

FFBC : 3F9D dc.w TP_RAMTOP-99 ; SPI2

FFBE : 3FA0 dc.w TP_RAMTOP-96 ; SPI1

FFC0 : 3FA3 dc.w TP_RAMTOP-93 ; IIC

FFC2 : 3FA6 dc.w TP_RAMTOP-90 ; BDLC

FFC4 : 3FA9 dc.w TP_RAMTOP-87 ; Self Clock Mode

FFC6 : 3FAC dc.w TP_RAMTOP-84 ; PLL Lock

FFC8 : 3FAF dc.w TP_RAMTOP-81 ; Pulse Accu B Overflow

FFCA : 3FB2 dc.w TP_RAMTOP-78 ; MDCU

FFCC : 3FB5 dc.w TP_RAMTOP-75 ; Port H

FFCE : 3FB8 dc.w TP_RAMTOP-72 ; Port J

FFD0 : 3FBB dc.w TP_RAMTOP-69 ; ATD1

FFD2 : 3FBE dc.w TP_RAMTOP-66 ; ATD0

FFD4 : 3FC1 dc.w TP_RAMTOP-63 ; SCI1

FFD6 : 3FC4 dc.w TP_RAMTOP-60 ; SCI0

FFD8 : 3FC7 dc.w TP_RAMTOP-57 ; SPI0

FFDA : 3FCA dc.w TP_RAMTOP-54 ; Pulse Accu A Input Edge

FFDC : 3FCD dc.w TP_RAMTOP-51 ; Pulse Accu A Overflow

FFDE : 3FD0 dc.w TP_RAMTOP-48 ; Timer Overflow

FFE0 : 3FD3 dc.w TP_RAMTOP-45 ; TC7

FFE2 : 3FD6 dc.w TP_RAMTOP-42 ; TC6

FFE4 : 3FD9 dc.w TP_RAMTOP-39 ; TC5

FFE6 : 3FDC dc.w TP_RAMTOP-36 ; TC4

FFE8 : 3FDF dc.w TP_RAMTOP-33 ; TC3

FFEA : 3FE2 dc.w TP_RAMTOP-30 ; TC2

FFEC : 3FE5 dc.w TP_RAMTOP-27 ; TC1

FFEE : 3FE8 dc.w TP_RAMTOP-24 ; TC0

FFF0 : 3FEB dc.w TP_RAMTOP-21 ; RTI

FFF2 : 3FEE dc.w TP_RAMTOP-18 ; IRQ

FFF4 : 3FF1 dc.w TP_RAMTOP-15 ; XIRQ

FFF6 : 3FF4 dc.w TP_RAMTOP-12 ; SWI

FFF8 : 3FF7 dc.w TP_RAMTOP-9 ; Illegal Opcode

FFFA : 3FFA dc.w TP_RAMTOP-6 ; COP Fail

FFFC : 3FFD dc.w TP_RAMTOP-3 ; Clock Monitor Fail

FFFE : F000 dc.w main ; Reset

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 22

Lab 6: I/O Timer Functions

Introduction

The purpose of the timer module is to allow for time critical operations to be

handled mostly by hardware, instead of entirely in software. For example,

generating or measuring waveforms can be done with minimal input from the

processor using the timer module.

The 68HC12 Standard Timer Module consists of a 16-bit programmable timer

that is driven by a programmable prescaler mechanism. It also has eight 16-bit input

capture/output compare channels, and two pulse accumulators. This hardware is

explained in its datasheet.

Before anything happens in the Standard Timer Module, the software on the CPU

must enable the timer system by setting bits in the appropriate registers. Table 1

summarizes the studied MC9S12DP512 microcontroller timer register addresses.

1. Purpose

In this lab you will work with the timer Input Capture and Timer Output
Compare functions. To demonstrate their usage you will design a program to
measure the period of a signal and you will generate a 2 KHz waveform. Thus, you
will:

1- Learn and understand how to use timer functions and the underlying
mechanism for setting up real time counters.

2- Understand the basic idea of interrupts.

2. Pre-Lab

Part I: Input Capture

To measure the period of an unknown signal, the input-capture function should be

configured to capture the timer values corresponding to two consecutive rising or

falling edges.

The circuit connection for the period measurement is shown in Figure 1. Give the

logic flowchart, and write an assembly program for the period measurement.

(Capture the timer values corresponding to two consecutive rising edges).

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ

Figure 1. Period measurement signal connecti

Part II: Output compare

Suppose we want to generate a 2 KHz digital waveform with a 40 percent duty
cycle on the PT0 pin. Assume that the E

1. By setting the prescale factor to 8. What will be the period of the generated
signal?

2. What is the high interval of one period?
3. What is the low interval?
4. Use OC0 to generate the 2 KHZ waveform. Initially, write the program

without using interrupt.
5. Rewrite the program by using interrupt

perform other operations.

3. The LAB

1. Connect PT0 to a digital
its frequency to a random value; then, load the program of part I to
measure the period of the sensed signal and post its value on PORTB.

2. Connect PT0 pin to an osc
generate a 2 KHz waveform without and with interrupt.

mbedded systems lab manual

ha.belaidi@univ-boumerdes.dz

Figure 1. Period measurement signal connection.

Part II: Output compare

Suppose we want to generate a 2 KHz digital waveform with a 40 percent duty
cycle on the PT0 pin. Assume that the E-clock frequency is 25 MHz.

By setting the prescale factor to 8. What will be the period of the generated

What is the high interval of one period?
What is the low interval?
Use OC0 to generate the 2 KHZ waveform. Initially, write the program
without using interrupt.
Rewrite the program by using interrupt-driven approach so that the CPU can

ations.

Connect PT0 to a digital-waveform generator as shown in figure 1. Set
its frequency to a random value; then, load the program of part I to
measure the period of the sensed signal and post its value on PORTB.

Connect PT0 pin to an oscilloscope. Load the program of part II to
generate a 2 KHz waveform without and with interrupt.

 Page 23

Suppose we want to generate a 2 KHz digital waveform with a 40 percent duty
clock frequency is 25 MHz.

By setting the prescale factor to 8. What will be the period of the generated

Use OC0 to generate the 2 KHZ waveform. Initially, write the program

driven approach so that the CPU can

waveform generator as shown in figure 1. Set
its frequency to a random value; then, load the program of part I to
measure the period of the sensed signal and post its value on PORTB.

illoscope. Load the program of part II to
generate a 2 KHz waveform without and with interrupt.

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ

Table 1. MC9S12DP512 microcontroller timer register addresses

mbedded systems lab manual

ha.belaidi@univ-boumerdes.dz

MC9S12DP512 microcontroller timer register addresses

 Page 24

MC9S12DP512 microcontroller timer register addresses

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ

mbedded systems lab manual

ha.belaidi@univ-boumerdes.dz Page 25

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 26

Lab 7: Serial Communication Interface

Introduction

There are two types of serial communications modules on the HCS12 chips: the
SPI module and the SCI module. The Serial Peripheral Interface (SPI) is a
synchronous (clocked) module used for high-speed communications over short
distances with other devices that have an SPI interface. We might use the SPI to
communicate with a high-speed, high-resolution A/D converter, for instance.
Because of signal degradation and critical timing issues with clock skew, the SPI is
not suitable for long-distance communications. Usually the SPI is used for devices
on the same printed circuit board as the microcontroller only 1 to 10 inches away.

The Serial Communications Interface (SCI) module is a relatively slow,
asynchronous communication port that is widely used to communicate with other
embedded systems and devices. The RS-232 interface to the T-board, for instance,
uses an SCI interface. The SCI is more widely used than the SPI, and can
communicate over longer distances than the SPI. We will use the SCI module in this
Lab. The functional diagram of the Serial Communications Interface (SCI) is given
in figure 1.

Figure 1. Functional diagram of the Serial Communications Interface (SCI)

1. Purpose

This lab is based on using the SCI Serial Communications module, and will show

the basic steps needed to set up the HCS12 for asynchronous serial communications.

D7 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

Receive Data Register (RDR)

Transmit Data Register (TDR)

SCI Status Register 1 (SCxSR1)

SCI Baud Rate Control H (SCxBDH)

SCI Control Register 2 (SCxCR2)

Transmit Shift Register

Receive Shift Register

Serial Data Out

Serial Data In

TxD

RxD

SCI Control Register 1 (SCxCR1)

D8

D8

SCxDRL

PS1 (PS3)

PS0 (PS2)

SCI Status Register 2 (SCxSR2)

SCI Baud Rate Control L (SCxBDL)

SCI Data Register H (SCxDRH)

EE529L Embedded systems lab manual

Dr. Hadjira BELAIDI : ha.belaidi@univ-boumerdes.dz Page 27

You will write a simple program that continuously transmits a string of characters

from a T-board, and then add some code so that you can receive and store the

characters as well.

2. Pre-Lab
1) Draw the waveform you would see when sending the character 'A' out of the

transmit SCI port. Show the whole frame including start, stop and data bits, and

include a time axis (assume we are transmitting at 19200 baud).

2) Write an instruction sequence that configures SCI0 for 19200 baud, 8-data bit, 1

stop bit, no parity with the 25-MHz E–clock.

3) Enable the RX register (and also the TX register of course).

4) Write a subroutine to transmit characters of the string 'Code Warrior' from SCI0

in an infinite loop.

5) Write a subroutine to input a string from SCI0. The string is terminated by the

carriage return character and must be stored in a buffer pointed to by index

register X. The register addresses are given in the following table (Table 1).

3. The LAB

Run the pre-written programs and verify their functionality.

Table 1. SCI Registers in the MC9S12DP512
Name Register Addr Description

SC0BDH 00C8 SCI Baud Rate Control Register High
SC0BDL 00C9 SCI Baud Rate Control Register Low
SC0CR1 00CA SCI Control Register 1
SC0CR2 00CB SCI Control Register 2
SC0SR1 00CC SCI Status Register 1
SC0SR2 00CD SCI Status Register 2
SC0DRH 00CE SCI Data Register High
SC0DRL 00CF SCI Data Register Low

