جزوه توابع مثلثاتی در ریاضیات، منظور از توابع مثلثاتی شش تابع سینوس، کسینوس، تانژانت، کتانژانت، سکانت و کسکانت است که این توابع رابطهٔ میان زاویه‌ها و ضلع‌های یک مثلث قائم‌الزاویه را نشان می‌دهند و به همین دلیل توابع مثلثاتی نامیده می‌شوند. قدمت اولین متون به جا مانده از توابع مثلثاتی به دوران پیش از میلاد در مصر و یونان بازمی‌گردد. قضیهٔ تالس توسط تالس در سده ششم پیش از میلاد در مصر مطرح شد، همچنین از قضیهٔ فیثاغورس به عنوان سنگ بنای مثلثات یاد می‌شود. علاوه بر مصر و یونان، کشورهای دیگری از جمله هند، کشورهای اسلامی، چین و کشورهای اروپایی پیشبردهای مطرحی در زمینه مثلثات داشتند که می‌توان به افرادی چون خوارزمی، بتانی، ابوالوفا محمد بوزجانی، شن کو، گو شوجینگ و رتیکوس اشاره کرد. تعاریف متفاوتی از این توابع بیان شده است، ساده‌ترین آن‌ها بر پایهٔ دایرهٔ واحد است که در این تعریف دایره‌ای با شعاع ۱ ترسیم می‌شود و شعاعی با زاویهٔ مشخص نسبت به محور افقی روی آن رسم شده و یک مثلث را تشکیل می‌دهد. هر یک از این توابع را می‌توان با پاره‌خطی در این دایره نشان داد. تعاریف دیگری از توابع مثلثاتی نیز بر پایهٔ انتگرال، سری توانی و معادلهٔ دیفرانسیل بیان شده است که هر یک از آن‌ها کاربرد خاص خود را دارند. برای نمونه در تعریف بر پایهٔ سری توانی، از سری مکلورن استفاده می‌شود که در محاسبهٔ مقدار تقریبی آن‌ها توابع مثلثاتی استفاده فراوان دارد.
اصل نامساوی مثلثی
 
تابع تانژانت دوره ای
 
اندازه نیمسازهای زاویه‎های برونی مثلث
 
تابع سینوس تابع کتانژانت تابع کسینوس
 
حالتهای تشابه دو مثلث
 
حد توابع ساده مثلثاتی
 

The preview option is not available.


3
Patents
6.8
k
Conferences
1.9
k
Events
3.3
k
Jobs
6.7
k
Notes
3.4
k
Authors
253
Publishers
2.7
k
Users

This is an animated dialog which is useful for displaying information. The dialog window can be moved, resized and closed with the 'x' icon.

These items will be permanently deleted and cannot be recovered. Are you sure?